

Vulkan Synchronization Validation
Quick Start Guide

John Zulauf, LunarG
Available as Alpha Release with SDK 1.2.148.1
August 2020

Introduction
Synchronization Validation is intended to identify resource access conflicts due to
missing or incorrect synchronization operations between actions (Draw, Copy, Dispatch,
Blit) reading or writing the same regions of memory.

The following quick start should enable initial testing for those familiar with Vulkan
synchronization and debugging validation issues. Prior to enabling Synchronization
Validation, assure that the default set of Validation checks run cleanly. It is assumed
that quick start readers are familiar with both Vulkan Synchronization and
using/configuring Vulkan Validation.

Running Synchronization Validation

The simplest way to run synchronization validation and debug issues is to:

● Enable Synchronization Validation using ​Vulkan Configurator (vkconfig)​.
● Create a debug callback with ​vkCreateDebugUtilsMessengerEXT ​with

VK_DEBUG_REPORT_ERROR_BIT_EXT ​set.
● Set a breakpoint in the debug callback and run your application in the debugger.
● The hazards will be reported when a ​vkCmd​... command with a hazard is

recorded.

1

https://vulkan.lunarg.com/doc/sdk/latest/windows/vkconfig.html

Synchronization Validation Messages

All synchronization error messages begin with ​SYNC-<hazard name>​. The message
body is constructed:

<cmd name>: Hazard <hazard name> <command specific details> Access info (<...>)

Command specific details typically include the specifics of the access within the current
command. The ​Access info​ is common to all Synchronization Validation error messages.

Field Description

usage The stage/access of the current command

prior_usage The stage/access of the previous (hazarded) use

read_barrier For read ​usage​, the list of stages with execution barriers between
prior_usage​ and ​usage

write_barrier For write ​usage​, the list of stage/access (in ​usage​ format) with
memory barriers between ​prior_usage​ and ​usage

command The command that performed ​prior_usage

seq_no The zero based index of ​command​ within the command buffer

reset_no the reset count of the command buffer ​command​ is recorded to

08/2020 LunarG Quick Start Guide to Vulkan Synchronization Validation 2

Frequently Found Issues

● Assuming Pipeline stages are logically extended with respect to memory access
barriers. Specifying the vertex shader stage in a barrier will not apply to all
subsequent shader stages read/write access.

● Invalid stage/access pairs (specifying a pipeline stage for which a given access is
not valid) that yield no barrier.

● Relying on implicit subpass dependencies with VK_SUBPASS_EXTERNAL
when memory barriers are needed.

● Missing memory dependencies with Image Layout Transitions from pipeline
barrier or renderpass Begin/Next/End operations.

● Missing stage/access scopes for load operations, noting that color and
depth/stencil are done by different stage/access.

Debugging Tips

● Read and write barriers in the error message can help identify the
synchronization operation (either subpass dependency or pipeline barrier) with
insufficient or incorrect destination stage/access masks (second scope).

● Access info read_barrier​ and ​write_barrier​ values of 0, reflect the absence of
any barrier and can indicate an insufficient or incorrect source mask (first scope)

● Insert additional barriers with stage/access ​VK_PIPELINE_STAGE_ALL_COMMANDS_BIT​,
VK_ACCESS_MEMORY_READ_BIT​|​VK_ACCESS_MEMORY_WRITE_BIT​ for both​ src*Mask​ and
dst*Mask​ fields to locate missing barriers. If the inserted barrier ​resolves​ a hazard,
the conflicting access ​happens-before​ the inserted barrier. (Be sure to delete
later.)

08/2020 LunarG Quick Start Guide to Vulkan Synchronization Validation 3

Synchronization blogs/articles

Synchronization Examples
https://github.com/KhronosGroup/Vulkan-Docs/wiki/Synchronization-Examples

Keeping your GPU fed without getting bitten
https://www.youtube.com/watch?v=oF7vOTTaAh4

Yet another blog explaining Vulkan synchronization
http://themaister.net/blog/2019/08/14/yet-another-blog-explaining-vulkan-synchronizatio
n/

08/2020 LunarG Quick Start Guide to Vulkan Synchronization Validation 4

https://github.com/KhronosGroup/Vulkan-Docs/wiki/Synchronization-Examples
https://github.com/KhronosGroup/Vulkan-Docs/wiki/Synchronization-Examples
https://www.youtube.com/watch?v=oF7vOTTaAh4
https://www.youtube.com/watch?v=oF7vOTTaAh4
http://themaister.net/blog/2019/08/14/yet-another-blog-explaining-vulkan-synchronization/
http://themaister.net/blog/2019/08/14/yet-another-blog-explaining-vulkan-synchronization/
http://themaister.net/blog/2019/08/14/yet-another-blog-explaining-vulkan-synchronization/

