
1

Presentation:

https://bit.ly/48Wb5sL

Agenda
● Valid Usage and VUIDs

● Example error walkthrough

● Debug utilities extension

● Enabling and configuring validation

What is a Vulkan Layer
● A shared library that intercepts Vulkan commands from an application
● The Loader is responsible for managing layers and drivers

Vulkan
Application

Vulkan
Loader

GPU
(Vulkan Driver)

Vulkan
Layers

Why the Vulkan Validation Layer?
● OpenGL had many error code checks that drivers had to implement

● Checks always enabled in drivers (useless CPU overhead)

● Most checking was similar in all drivers (duplicated effort)

● Vulkan moved error checking to the Validation Layer
○ Enabled only during development, no overhead in released applications

What is Valid Usage
“set of conditions that must be met in order to achieve well-defined run-time

behavior in an application.”

● The driver assumes the application provides valid data

● If a Valid Usage is broken, the result is undefined behavior
○ For the current command and everything following it.

● Advice: Fix the first error message first

 Undefined Behavior

● … App might work fine
● … output might be corrupt
● … GPU might hang
● … Computer might blow up!
● Anything is possible!

https://raphlinus.github.io/programming/rust/2018/08/17/undefined-behavior.html

VUID
● Valid Usage ID

● Automatically generated number when spec is released

● Unique ID to map each error back to the spec
○ Format: VUID-{command or structure}-{parameter, field or None}-{Number}

○ Example: VUID-vkCmdDraw-None-07850

● Number is unique per Valid Usage, but could apply to multiple commands:
○ VUID-vkCmdDrawMultiEXT-None-07850

○ VUID-vkCmdDrawIndexed-None-07850

○ VUID-vkCmdDrawMultiIndexedEXT-None-07850

Advice: Read the spec!

● “Read the spec early and often”

● Has most of the answers!

● Tips for efficient spec reading:
○ Read the section where the VUID is defined

○ Search for words / phrases from the VUID text in the rest of the spec

○ Read VUIDs for the command(s) you’re using and any associated structures

Life cycle of a VU

New Extension

Spec bug
Missing VU

Life cycle of a VU

New Extension

Spec bug
Missing VU

Spec PR
Add VU

Life cycle of a VU

New Extension

Spec bug
Missing VU

Spec PR
Add VU

VU added to
Spec

Life cycle of a VU

New Extension

Spec bug
Missing VU

Spec PR
Add VU

VU added to
Spec

Implemented in
Validation Layers

Types of validation - API Usage

● Developer is using an API incorrectly

○ vkCreateImage(VK_IMAGE_TYPE_2D, extent.depth = 8);

● Setting depth, but using a 2D image (not 3D)

Types of validation - Device Features

● Unsuccessful interaction between application and system features

● VkSubpassDescription::colorAttachmentCount = 5;

● This might succeed or fail, it will depend on the system

○ maxColorAttachments

○ Minimum required is only 4

Types of validation - Resource constraints
● Unsuccessful interaction between application and the current system state.

● Memory Allocation is the classic example
○ VkMemoryAllocateInfo::allocationSize = HUGE_SIZE;

○ VkResult vkAllocateMemory(..., VkDeviceMemory *pMemory);

● This might fail depending on the what else is happening on the system

● Advice: Always handle VkResult return values
○ These errors can happen in a correct application!

An example error: vkcube

VkBufferImageCopy copy_region = {
 .bufferOffset = 0,
 .bufferRowLength = demo->staging_texture.tex_width,
 .bufferImageHeight = demo->staging_texture.tex_height,
 .imageSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1},
 .imageOffset = {0, 0, 0},
 .imageExtent = {demo->staging_texture.tex_width, demo->staging_texture.tex_height, 1},
};
vkCmdCopyBufferToImage(demo->cmd, demo->staging_texture.buffer, demo->textures[i].image,
 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ©_region)

An example error: vkcube

VkBufferImageCopy copy_region = {
 .bufferOffset = 0,
 .bufferRowLength = demo->staging_texture.tex_width * 2, // ERROR!
 .bufferImageHeight = demo->staging_texture.tex_height,
 .imageSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1},
 .imageOffset = {0, 0, 0},
 .imageExtent = {demo->staging_texture.tex_width, demo->staging_texture.tex_height, 1},
};
vkCmdCopyBufferToImage(demo->cmd, demo->staging_texture.buffer, demo->textures[i].image,
 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ©_region)

Validation Output: Error Message
VUID-vkCmdCopyBufferToImage-pRegions-00171(ERROR / SPEC): msgNum: 1867332608 - Validation Error: [
VUID-vkCmdCopyBufferToImage-pRegions-00171] Object 0: handle = 0x56313fd28a00, type =
VK_OBJECT_TYPE_COMMAND_BUFFER; Object 1: handle = 0xd175b40000000013, type = VK_OBJECT_TYPE_BUFFER; |
MessageID = 0x6f4d3c00 | vkCmdCopyBufferToImage: pRegion[0] is trying to copy 523264 bytes plus 0 offset
to/from the VkBuffer (VkBuffer 0xd175b40000000013[]) which exceeds the VkBuffer total size of 262144 bytes.
The Vulkan spec states: srcBuffer must be large enough to contain all buffer locations that are accessed
according to Buffer and Image Addressing, for each element of pRegions
(https://vulkan.lunarg.com/doc/view/1.3.243.0/windows/1.3-extensions/html/vkspec.html#VUID-vkCmdCopyBufferToI
mage-pRegions-00171)
 Objects: 2
 [0] 0x56313fd28a00, type: 6, name: NULL
 [1] 0xd175b40000000013, type: 9, name: NULL

Error Message - Basic Info
VUID-vkCmdCopyBufferToImage-pRegions-00171(ERROR / SPEC): msgNum: 1867332608 - Validation Error: [
VUID-vkCmdCopyBufferToImage-pRegions-00171] Object 0: handle = 0x56313fd28a00, type =
VK_OBJECT_TYPE_COMMAND_BUFFER; Object 1: handle = 0xd175b40000000013, type = VK_OBJECT_TYPE_BUFFER; |
MessageID = 0x6f4d3c00 | vkCmdCopyBufferToImage: pRegion[0] is trying to copy 523264 bytes plus 0 offset
to/from the VkBuffer (VkBuffer 0xd175b40000000013[]) which exceeds the VkBuffer total size of 262144 bytes.
The Vulkan spec states: srcBuffer must be large enough to contain all buffer locations that are accessed
according to Buffer and Image Addressing, for each element of pRegions
(https://vulkan.lunarg.com/doc/view/1.3.243.0/windows/1.3-extensions/html/vkspec.html#VUID-VkCmdCopyBufferToI
mage-pRegions-00171)
 Objects: 2
 [0] 0x56313fd28a00, type: 6, name: NULL
 [1] 0xd175b40000000013, type: 9, name: NULL

Error Message - Basic Info
VUID-vkCmdCopyBufferToImage-pRegions-00171(ERROR / SPEC): msgNum: 1867332608 - Validation Error: [
VUID-vkCmdCopyBufferToImage-pRegions-00171] Object 0: handle = 0x56313fd28a00, type =
VK_OBJECT_TYPE_COMMAND_BUFFER; Object 1: handle = 0xd175b40000000013, type = VK_OBJECT_TYPE_BUFFER; |
MessageID = 0x6f4d3c00 | vkCmdCopyBufferToImage: pRegion[0] is trying to copy 523264 bytes plus 0 offset
to/from the VkBuffer (VkBuffer 0xd175b40000000013[]) which exceeds the VkBuffer total size of 262144 bytes.
The Vulkan spec states: srcBuffer must be large enough to contain all buffer locations that are accessed
according to Buffer and Image Addressing, for each element of pRegions
(https://vulkan.lunarg.com/doc/view/1.3.243.0/windows/1.3-extensions/html/vkspec.html#VUID-VkCmdCopyBufferToI
mage-pRegions-00171)
 Objects: 2
 [0] 0x56313fd28a00, type: 6, name: NULL
 [1] 0xd175b40000000013, type: 9, name: NULL

Error Message - Basic Info
VUID-vkCmdCopyBufferToImage-pRegions-00171(ERROR / SPEC): msgNum: 1867332608 - Validation Error: [
VUID-vkCmdCopyBufferToImage-pRegions-00171] Object 0: handle = 0x56313fd28a00, type =
VK_OBJECT_TYPE_COMMAND_BUFFER; Object 1: handle = 0xd175b40000000013, type = VK_OBJECT_TYPE_BUFFER; |
MessageID = 0x6f4d3c00 | vkCmdCopyBufferToImage: pRegion[0] is trying to copy 523264 bytes plus 0 offset
to/from the VkBuffer (VkBuffer 0xd175b40000000013[]) which exceeds the VkBuffer total size of 262144 bytes.
The Vulkan spec states: srcBuffer must be large enough to contain all buffer locations that are accessed
according to Buffer and Image Addressing, for each element of pRegions
(https://vulkan.lunarg.com/doc/view/1.3.243.0/windows/1.3-extensions/html/vkspec.html#VUID-VkCmdCopyBufferToI
mage-pRegions-00171)
 Objects: 2
 [0] 0x56313fd28a00, type: 6, name: NULL
 [1] 0xd175b40000000013, type: 9, name: NULL

● msgNum / MessageID is a hash of the VUID string, used for handling
duplicate messages

Error Message - Main message
VUID-vkCmdCopyBufferToImage-pRegions-00171(ERROR / SPEC): msgNum: 1867332608 - Validation Error: [
VUID-vkCmdCopyBufferToImage-pRegions-00171] Object 0: handle = 0x56313fd28a00, type =
VK_OBJECT_TYPE_COMMAND_BUFFER; Object 1: handle = 0xd175b40000000013, type = VK_OBJECT_TYPE_BUFFER; |
MessageID = 0x6f4d3c00 | vkCmdCopyBufferToImage: pRegion[0] is trying to copy 523264 bytes plus 0 offset
to/from the VkBuffer (VkBuffer 0xd175b40000000013[]) which exceeds the VkBuffer total size of 262144 bytes.
The Vulkan spec states: srcBuffer must be large enough to contain all buffer locations that are accessed
according to Buffer and Image Addressing, for each element of pRegions
(https://vulkan.lunarg.com/doc/view/1.3.243.0/windows/1.3-extensions/html/vkspec.html#VUID-vkCmdCopyBufferToI
mage-pRegions-00171)
 Objects: 2
 [0] 0x56313fd28a00, type: 6, name: NULL
 [1] 0xd175b40000000013, type: 9, name: NULL

Error Message - Main message
VUID-vkCmdCopyBufferToImage-pRegions-00171(ERROR / SPEC): msgNum: 1867332608 - Validation Error: [
VUID-vkCmdCopyBufferToImage-pRegions-00171] Object 0: handle = 0x56313fd28a00, type =
VK_OBJECT_TYPE_COMMAND_BUFFER; Object 1: handle = 0xd175b40000000013, type = VK_OBJECT_TYPE_BUFFER; |
MessageID = 0x6f4d3c00 | vkCmdCopyBufferToImage: pRegion[0] is trying to copy 523264 bytes plus 0 offset
to/from the VkBuffer (VkBuffer 0xd175b40000000013[]) which exceeds the VkBuffer total size of 262144 bytes.
The Vulkan spec states: srcBuffer must be large enough to contain all buffer locations that are accessed
according to Buffer and Image Addressing, for each element of pRegions
(https://vulkan.lunarg.com/doc/view/1.3.243.0/windows/1.3-extensions/html/vkspec.html#VUID-vkCmdCopyBufferToI
mage-pRegions-00171)
 Objects: 2
 [0] 0x56313fd28a00, type: 6, name: NULL
 [1] 0xd175b40000000013, type: 9, name: NULL

Error Message - Main message
VUID-vkCmdCopyBufferToImage-pRegions-00171(ERROR / SPEC): msgNum: 1867332608 - Validation Error: [
VUID-vkCmdCopyBufferToImage-pRegions-00171] Object 0: handle = 0x56313fd28a00, type =
VK_OBJECT_TYPE_COMMAND_BUFFER; Object 1: handle = 0xd175b40000000013, type = VK_OBJECT_TYPE_BUFFER; |
MessageID = 0x6f4d3c00 | vkCmdCopyBufferToImage: pRegion[0] is trying to copy 523264 bytes plus 0 offset
to/from the VkBuffer (VkBuffer 0xd175b40000000013[]) which exceeds the VkBuffer total size of 262144 bytes.
The Vulkan spec states: srcBuffer must be large enough to contain all buffer locations that are accessed
according to Buffer and Image Addressing, for each element of pRegions
(https://vulkan.lunarg.com/doc/view/1.3.243.0/windows/1.3-extensions/html/vkspec.html#VUID-vkCmdCopyBufferToI
mage-pRegions-00171)
 Objects: 2
 [0] 0x56313fd28a00, type: 6, name: NULL
 [1] 0xd175b40000000013, type: 9, name: NULL

Error Message - Spec Reference
VUID-vkCmdCopyBufferToImage-pRegions-00171(ERROR / SPEC): msgNum: 1867332608 - Validation Error: [
VUID-vkCmdCopyBufferToImage-pRegions-00171] Object 0: handle = 0x56313fd28a00, type =
VK_OBJECT_TYPE_COMMAND_BUFFER; Object 1: handle = 0xd175b40000000013, type = VK_OBJECT_TYPE_BUFFER; |
MessageID = 0x6f4d3c00 | vkCmdCopyBufferToImage: pRegion[0] is trying to copy 523264 bytes plus 0 offset
to/from the VkBuffer (VkBuffer 0xd175b40000000013[]) which exceeds the VkBuffer total size of 262144 bytes.
The Vulkan spec states: srcBuffer must be large enough to contain all buffer locations that are accessed
according to Buffer and Image Addressing, for each element of pRegions
(https://vulkan.lunarg.com/doc/view/1.3.243.0/windows/1.3-extensions/html/vkspec.html#VUID-vkCmdCopyBufferToI
mage-pRegions-00171)
 Objects: 2
 [0] 0x56313fd28a00, type: 6, name: NULL
 [1] 0xd175b40000000013, type: 9, name: NULL

https://www.khronos.org/registry/vulkan/specs/1.3-extensions/html/vkspec.html#VUID-vkCmdCopyBufferToImage-pRegions-00171
https://www.khronos.org/registry/vulkan/specs/1.3-extensions/html/vkspec.html#VUID-vkCmdCopyBufferToImage-pRegions-00171

Error Message - Object Handles
VUID-vkCmdCopyBufferToImage-pRegions-00171(ERROR / SPEC): msgNum: 1867332608 - Validation Error: [
VUID-vkCmdCopyBufferToImage-pRegions-00171] Object 0: handle = 0x56313fd28a00, type =
VK_OBJECT_TYPE_COMMAND_BUFFER; Object 1: handle = 0xd175b40000000013, type = VK_OBJECT_TYPE_BUFFER; |
MessageID = 0x6f4d3c00 | vkCmdCopyBufferToImage: pRegion[0] is trying to copy 523264 bytes plus 0 offset
to/from the VkBuffer (VkBuffer 0xd175b40000000013[]) which exceeds the VkBuffer total size of 262144 bytes.
The Vulkan spec states: srcBuffer must be large enough to contain all buffer locations that are accessed
according to Buffer and Image Addressing, for each element of pRegions
(https://vulkan.lunarg.com/doc/view/1.3.243.0/windows/1.3-extensions/html/vkspec.html#VUID-vkCmdCopyBufferToI
mage-pRegions-00171)
 Objects: 2
 [0] 0x56313fd28a00, type: 6, name: NULL
 [1] 0xd175b40000000013, type: 9, name: NULL

Debug Utilities Extension
● VK_EXT_debug_utils

○ Replaced original VK_EXT_debug_report/VK_EXT_debug_marker

● Implemented by Vulkan-ValidationLayers (and other tools)

● Provides the ability to attach user-defined names to

○ Vulkan Objects

○ Sequences of commands recorded in Command Buffers

○ Queue submissions

● Names show up in validation error messages

○ Also used by other tools such as RenderDoc

● Allows applications to register their own validation error handling callback

https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VK_EXT_debug_utils.html

Debug Utilities Extension: Object naming

Objects - 2
Object[0] - VK_OBJECT_TYPE_COMMAND_BUFFER, Handle 0x5566702c9f60, Name "PrepareCB"
Object[1] - VK_OBJECT_TYPE_BUFFER, Handle 0x9fde6b0000000014, Name "TexBuffer(lunarg.ppm)"

● The demo_name_object() function
○ vsnprintf()’s the name into a buffer
○ Calls vkSetDebugUtilsObjectNameEXT()
○ Each object’s name is stored in internal storage

https://github.com/KhronosGroup/Vulkan-Tools/blob/main/cube/cube.c#L609

Debug Utilities extension: Command buffer labels

Command Buffer Labels - 3
Label[0] - StagingBufferCopy(0) { 0.000000, 0.000000, 0.000000, 0.000000}
Label[1] - StagingTexture(0) { 0.000000, 0.000000, 0.000000, 0.000000}
Label[2] - Prepare { 0.000000, 0.000000, 0.000000, 0.000000}

● Allows a name to be attached to a sequence of commands in a command buffer

● Stack-like, multiple labels can be present at once

○ vkCmdBeginDebugUtilsLabelEXT() pushes

○ vkCmdEndDebugUtilsLabelEXT() pops

● See also vkQueueBeginDebugUtilsLabelEXT()

● Not printed by default error handler!

Debug Utilities extension: vkcube error callback
ERROR : VALIDATION - Message Id Number: 1867332608 | Message Id Name:
VUID-vkCmdCopyBufferToImage-pRegions-00171

Validation Error: [VUID-vkCmdCopyBufferToImage-pRegions-00171] Object 0: handle = 0x562780095ca0,
name = PrepareCB, type = VK_OBJECT_TYPE_COMMAND_BUFFER; Object 1: handle = 0x9fde6b0000000014, name =
TexBuffer type = VK_OBJECT_TYPE_BUFFER; | MessageID = 0x6f4d3c00 | vkCmdCopyBufferToImage: pRegion[0] is
trying to copy 523264 bytes plus 0 offset to/from the VkBuffer (VkBuffer
0x9fde6b0000000014[TexBuffer(lunarg.ppm)]) which exceeds the VkBuffer total size of 262144 bytes. The Vulkan
spec states: srcBuffer must be large enough to contain all buffer locations that are accessed according to
Buffer and Image Addressing, for each element of pRegions
(https://vulkan.lunarg.com/doc/view/1.3.243.0/windows/1.3-extensions/html/vkspec.html#VUID-vkCmdCopyBufferToI
mage-pRegions-00171)

Objects - 2
Object[0] - VK_OBJECT_TYPE_COMMAND_BUFFER, Handle 0x562780095ca0, Name "PrepareCB"
Object[1] - VK_OBJECT_TYPE_BUFFER, Handle 0x9fde6b0000000014, Name "TexBuffer(lunarg.ppm)"

Command Buffer Labels - 3
Label[0] - StagingBufferCopy(0) { 0.000000, 0.000000, 0.000000, 0.000000}
Label[1] - StagingTexture(0) { 0.000000, 0.000000, 0.000000, 0.000000}
Label[2] - Prepare { 0.000000, 0.000000, 0.000000, 0.000000}

Debug Utilities extension: Custom message callback
 ● Set up by calling vkCreateDebugUtilsMessengerEXT()

○ Your callback receives a complex struct for each error

○ Same mechanism used for default error logging

● Possible uses

○ Make your own message format

○ Add messages to application logging stream

○ Send messages to somewhere other than the console

○ Trigger failures in your unit test framework

● Don’t use it to filter messages, it is faster to use Validation Layer’s the built in filtering

Validation Quick Start - Enable
● Run the Vulkan Configurator (Simplest)

○ With SDK installed you should have a Vulkan Configurator program under the start menu

○ Or run vkconfig from the command line

● At vkCreateInstance() time
○ Add the layer name to VkInstanceCreateInfo::ppEnabledLayerNames

● From the terminal
○ export VK_INSTANCE_LAYERS=VK_LAYER_KHRONOS_validation ./your-application

Vulkan Configurator

Configuration - How to set
● Right pane in vkconfig
● Can use vk_layer_settings.txt

○ khronos_validation.enables
○ khronos_validation.disables

● Environment variables
○ VK_LAYER_ENABLES
○ VK_LAYER_DISABLES

● VK_EXT_validation_features
○ Set at VkDevice creation time

● https://vulkan.lunarg.com/doc/sdk/latest/windows/khronos_validation_layer.html

https://vulkan.lunarg.com/doc/sdk/latest/windows/khronos_validation_layer.html

Configuration - presets and areas
● Validation is split up into several areas to reduce

performance overhead

● Don’t enable all areas at once (it will be slow!)

● Use the available presets!

● Fix errors from each preset,

○ Then run Standard preset again

Configuration: Stateless
● Checks implicit and other simple VUIDs

● Lots of generated checks

● Doesn’t require expensive state tracking - fast

Configuration: Core
● Most VUIDs checked here

● Requires state tracking - slower

Configuration: Thread Safety
● Checks external synchronization requirements

● Accessing a vulkan object from multiple threads concurrently

Configuration: Handle Wrapping
● Prevents handle reuse bugs

Configuration: Object Lifetime
● Detects use of destroyed objects

Configuration: Shader Based
● GPU-Assisted

○ AKA: GPU-AV

○ Instruments SPIR-V to detect problems in shaders

○ Descriptor indexing

○ Buffer Device Address

○ Not supported on Mac

● DebugPrintf

○ Adds printf() functionality to shaders

○ Not supported on Mac

Configuration: Synchronization
● Checks for correct Execution and Memory Dependencies

● vkCmdPipelineBarrier(), VkEvents, etc.

Configuration: Best Practice
● Detects Valid but dubious behavior

○ Performance warnings

○ Undefined values

○ Non-success return values

● Mixture of common and vendor-specific checks

Best Practices example: Undefined Value
● Undefined Value != Undefined Behavior
● The app will never crash
● Your data might be garbage
● Great use of Best Practices layers

Undefined Behavior vs Best Practice

Normal Error Valid
But is this what you wanted?

Configuration: Break on error
● Will stop program when an error is detected

○ Calls DebugBreak(); or raise(SIGTRAP);
● Stack trace will usually take you to the part of your code causing

the error
● But some errors are not detected until queue submission time

○ Examples: Image Layout, Sync Validation, Timeline
Semaphores

○ Stack trace will take you to the queue submission code

Configuration: Limit message severity
● Almost all messages are ‘Error’

● Except Best Practices, which is ‘Performance’

and ‘Warning’

Configuration: Limit repeated messages
● Limit times a message is repeated

○ Exact VUID string must match to count as a

repeat

Configuration: Mute message
● Sometimes undefined behaviour works

● Sometimes the Validation Layers have bugs

● Sometimes the Vulkan Spec has bugs

Is this really an error?
● Advice:

○ Search in the ValidationLayer source for the VUID string to see how it is validated
○ Check Khronos Slack, Discord, Reddit, etc.
○ Disable implicit layers, which could cause errors

● Could be a bug in validation or the spec, please report it!
● If not sure which to choose, feel free to put in Validation repo

Not all VUIDs checked

Issue backlog

Recent Improvements (last 12 months)
● Improved consistency and detail of all existing error messages

● GPU-AV descriptor indexing validation

● Sync Validation at Queue submission time

● Improved support for timeline semaphores, queue present operations,

external memory

● Vulkan Utilities Libraries (commonly used parts of VVL codebase)
○ Utility headers such as vk_format_utils.h

○ Layer Settings library

GPU-AV descriptor indexing validation
“A descriptor is dynamically used if any shader invocation executes an instruction that performs any memory access using

the descriptor. If a descriptor is not dynamically used, any resource referenced by the descriptor is not considered to be

referenced during command execution.”

● Bindless applications have huge arrays of descriptors
○ But… only a few descriptors are used by each shader invocation

● GPU-AV has instrumentation to track which descriptors are used
○ CPU code then validates only this subset

● Improves performance and removes false positives from unused descriptors

Validation Layer Performance Improvements

HOST_CACHED
memory

GPU-AV
Validation for descriptor
indexing

Removed GPU-AV
vkQueueWaitIdle() after
Every queue submission.

Validation Layer Performance Improvements

HOST_CACHED
memory

GPU-AV
Validation for descriptor
indexing

Removed GPU-AV
vkQueueWaitIdle() after
Every queue submission.

No more false positives!
No more skipped validation!

Upcoming Improvements
● More GPU-AV work

○ Ray tracing
○ Descriptor buffers

● Sync validation performance optimization
● Improve debuggability of errors detected during queue submission

○ Finding which command caused an error of this type can be difficult

● SPIR-V runtime validation improvements
● Further work on error message formatting
● Again, please submit an Issue on github if we’re missing something you need!

○ We also accept Pull Requests :)

https://github.com/KhronosGroup/Vulkan-ValidationLayers/issues

Summary
● Vulkan is complex and there are many rules for you to follow

● The VUID system and Validation Layer help you deal with these rules

● The Debug Utilties extension can also help you find the source of errors

● The Vulkan Configurator is an easy way to configure validation

● The Validation Layer isn’t perfect but we’re always working to make it better

Today’s
Presentation:

https://bit.ly/48Wb5sL

Thank you!

QUESTIONS?

Get A FREE Tumbler
at the LunarG Sponsor Table!

