
The 7th Vulkan Developer Conference
Cambridge, UK  |  February 11-13, 20252025

Debugging your GPU Workflow

Spencer Fricke
LunarG, Inc.



● Been working with Vulkan since 2017
● Been part of the Vulkan Working Group since 2019
● Been LunarG since October 2022

○ Technical Lead for the Validation Layer
○ Help maintain various SPIR-V tools

● Working on building GPU debugging tools over the last year
● Will talk to you forever afterwards about this presentation or 

anything Vulkan related
○ (personal disclaimer)

Some quick information about me

2



● Many GPU Debugging workflows (with examples)
○ Robustness
○ GPU-AV
○ VK_EXT_debug_utils
○ NonSemetic Shader DebugInfo
○ DebugPrintf
○ VK_EXT_device_fault

● How to get new/better GPU Debugging workflows

Table of Contents

3



● Showcase various ways to use 
Vulkan API to debug

● Show tools to help debug
● Show how it easy it is to use the 

tools!

Goals of this talk

(Generated by DALL-E)

4



When debugging on the GPU, you want all the tools!

(Generated by DALL-E)
5



● Features that can be enabled at device creation time
○ Some implementations will have slight performance reduction when 

feature is enabled

● Will prevent various out-of-bounds from crashing

● More info: https://docs.vulkan.org/guide/latest/robustness.html

「Toolbox」 Robustness

6

https://docs.vulkan.org/guide/latest/robustness.html


「Toolbox」 Robustness - example

7



「Toolbox」 Robustness - example

Might be larger than the bound VkBuffer!8



● Enable VkPhysicalDeviceFeatures::robustBufferAccess
○ OOB writes are ignored

○ OOB loads return zero 

● Did the crash/issue go away?

○ If it did, likely found source of issue

○ Can catch various OOB issue

「Toolbox」 Robustness - example

9



「Toolbox」 Robustness - example 2

10



「Toolbox」 Robustness - example 2

What if you forgot to bind a buffer?
(hint, it will hang most devices)11



● Enable VkPhysicalDeviceRobustness2FeaturesEXT::nullDescriptor

● Initialize everything with VK_NULL_HANDLE

「Toolbox」 Robustness - example 2

12



Very subtle difference!

Robustness limitations

Going to need another tool!

13



● GPU Assisted Validation
○ Optional setting in the Validation Layers

● Everything that can’t be detected on the CPU
● Add “hooks” to see what the GPU is doing at runtime and report back
● Has been top priority for us over the last year

○ we are only getting more and more GPU Centric world now.

「Toolbox」 GPU-AV

14



● VkConfig (recommended)

「Toolbox」 GPU-AV - turning on*

*Based on the 1.4.304 SDK15



● VkConfig (recommended)
● VK_EXT_layer_settings

「Toolbox」 GPU-AV - turning on*

*Based on the 1.4.304 SDK16



● VkConfig (recommended)
● VK_EXT_layer_settings
● Environment variables

○ Warning - this will still have Core Validation and will be extra slow

「Toolbox」 GPU-AV - turning on*

*Based on the 1.4.304 SDK17



● VkConfig (recommended)
● VK_EXT_layer_settings
● Environment variables
● VK_EXT_validation_features (deprecated)

「Toolbox」 GPU-AV - turning on*

*Based on the 1.4.304 SDK18



● Detects OOB descriptor index accesses
● Detects if descriptor is uninitialized or destroyed
● Detects if the descriptor itself is valid

○ Ex. Storage buffer is not accessed OOB
○ Ex. A 3D image accessed is bound to 

a VkImage with VK_IMAGE_TYPE_3D

「Toolbox」 GPU-AV - Descriptor Indexing

(Options from VkConfig)

19



● aka - buffer reference

● aka - PhysicalStorageBuffer

(SPV_KHR_physical_storage_buffer)

● aka - pointers in your shader

「Toolbox」 GPU-AV - Buffer Device Address

20



「Toolbox」 GPU-AV - Buffer Device 
Address

21



「Toolbox」 GPU-AV - Buffer Device 
Address

22



「Toolbox」 GPU-AV - Buffer Device 
Address

“dereferencing” the pointer23



● Detects if address is not properly aligned
● Detects if address is not inside a valid VkBuffer range

「Toolbox」 GPU-AV - Buffer Device Address

(Options from VkConfig)

24



Index Buffer gone wrong

v0 v1

v2v3

Index 
Buffer

0 1 2 2 3 0

25



Index Buffer gone wrong

v0 v1

v2v3

Index 
Buffer

0 1 2 2 -1 0

26



● Detects invalid indirect draw/dispatch/traceRay parameters
● Detects if depth/stencil buffer copies have invalid contents 
● Detects invalid values inside index buffer

「Toolbox」 GPU-AV - Buffer Contents

(Options from VkConfig)
27



● Many new things planned for 2025
○ Making it faster!
○ Better error messages!
○ VK_EXT_descriptor_buffer
○ VK_EXT_device_generated_commands
○ Ray Tracing
○ Mesh Shaders

● Please contact me (after the talk, Github issue, email, knocking 
on my front door) with GPU Validation you would find helpful!
○ Important to know which things to focus on first

「Toolbox」 GPU-AV is still growing!

28



● Can’t read/examine your source code
○ Can use your variable names

GPU-AV (and other tools) limitations

29



● Can’t read/examine your source code
○ Can use your variable names

● Can’t read your mind
○ Don’t know why you are trying to do what you are doing

GPU-AV (and other tools) limitations

30



● Give names to Vulkan handles

● Give names to section of command buffer

● Give name to VkQueue

● Will print out in Validation Layer errors (and other tools!)

「Toolbox」 VK_EXT_debug_utils

31



「Toolbox」 VK_EXT_debug_utils

32



「Toolbox」 VK_EXT_debug_utils

33



「Toolbox」 VK_EXT_debug_utils

34



「Toolbox」 VK_EXT_debug_utils

35



「Toolbox」 VK_EXT_debug_utils

36



「Toolbox」 VK_EXT_debug_utils

37



Some people do LOTS of draws

38



Some people do LOTS of draws

39

Validation Error: the 53rd vkCmdDraw() was bad
(this is not helpful for most people)



「Toolbox」 VK_EXT_debug_utils

40



「Toolbox」 VK_EXT_debug_utils

41



「Toolbox」 VK_EXT_debug_utils

42



「Toolbox」 VK_EXT_debug_utils

43



「Toolbox」 VK_EXT_debug_utils

44



Who here debugs their CPU stack 
traces with release builds?

(instead of using debug or release-
with-debug-info)

Quick Question

45



Who here debugs their CPU stack 
traces with release builds?

(instead of using debug or release-
with-debug-info)

Quick Question

The GPU should not be any different!
46



● Allows SPIR-V to be mapped back out to source language
○ This is what allows RenderDoc to let you step through a shader

○ Allows Validation Layers to report source code in error message

「Toolbox」 NonSemantic Shader 
DebugInfo 

47

https://vulkan.org/user/pages/09.events/vulkanised-2023/vulkanised_2023_source_level_shader_debugging_in_vulkan_with_renderdoc.pdf


「Toolbox」 NonSemantic Shader DebugInfo

VS

48



● App - make sure device supports VK_KHR_shader_non_semantic_info

○ Promoted in Vulkan 1.3 

● Shading Language - Produce the debug info
○ They likely do already!

● Tools - Consume the debug info

How to get this to work?

49



● Simple way to turn add to your SPIR-V
● Create a “debug” build of your shaders
● Same idea of relwithdebinfo

「Toolbox」 NonSemantic Shader DebugInfo 

50



● Thank Baldur!

● Many tools still need to improve usage of this

● Created SPIR-V Guide article to help https://github.com/KhronosGroup/SPIRV-

Guide/blob/main/chapters/shader_debug_info.md

● File bug reports on your tools if they use incorrectly!

2025 is the year of better shader 
debugging

51

https://github.com/KhronosGroup/SPIRV-Guide/blob/main/chapters/shader_debug_info.md
https://github.com/KhronosGroup/SPIRV-Guide/blob/main/chapters/shader_debug_info.md


● Lets you use printf() inside your shader

● Great to find values inside your shader

● Great to know if hit Ray Tracing stages

● Can produce a LOT of data
○ Would suggest wrapping with things such as if (gl_VertexIndex == 0)

「Toolbox」 Debug Printf

52



● Simple idea
○ Store values in a buffer, read afterwards and use sprintf()

● Standardized with SPV_KHR_non_semantic_info 
○ Will work the same in Validation Layers, RenderDoc, etc
○ More info found in SPIR-V Guide

「Toolbox」 Debug Printf

53

https://github.com/KhronosGroup/SPIRV-Guide/blob/main/chapters/nonsemantic.md


● Simple idea
○ Store values in a buffer, read afterwards and use sprintf()

● Standardized with SPV_KHR_non_semantic_info 
○ Will work the same in Validation Layers, RenderDoc, etc
○ More info found in SPIR-V Guide

● Need 2 things

1. Add to your shader
2. Have a tool consume it (and display the results)

「Toolbox」 Debug Printf

54

https://github.com/KhronosGroup/SPIRV-Guide/blob/main/chapters/nonsemantic.md


「Toolbox」 Debug Printf Example

GLSL HLSL / Slang

55



「Toolbox」 Debug Printf Example

GLSL HLSL / Slang

56



「Toolbox」 Debug Printf Example

GLSL HLSL / Slang

It is really this simple to add to your shader!57



● Super fast to get going with in VkConfig

「Toolbox」 Debug Printf Example

printf() results in same spot as normal 
validation layer error messages

58



● New way to quickly turn on Debug Printf
○ Need 1.4.304 SDK (or later)
○ Will disable the rest of Validation Layers for you
○ Still recommend using VkConfig if you can instead

「Toolbox」 Debug Printf Example

59



60



● Compiler Explorer (Godbolt) links to play with online
○ GLSL - https://godbolt.org/z/4fafn75Wq

○ HLSL - https://godbolt.org/z/d84qs4rca

○ Slang - https://godbolt.org/z/xz8v9hnK1

● Shameless plug - did you know SPIR-V and GPU Shading 

languages are now on Compiler Explorer!

Links examples of Debug Printf

61

https://godbolt.org/z/4fafn75Wq
https://godbolt.org/z/d84qs4rca
https://godbolt.org/z/xz8v9hnK1


● As of the 1.4.304 SDK can now be 
simultaneously used with GPU-AV 

「Toolbox」 Debug Printf - final note

62



I am getting 
VK_ERROR_DEVICE_LOST
and don’t know what to do!

Help me!

63



● Can provide great information on VK_ERROR_DEVICE_LOST
○ Unfortunately still not supported everywhere

「Toolbox」 VK_EXT_device_fault

64



● Can provide great information on VK_ERROR_DEVICE_LOST
○ Unfortunately still not supported everywhere

「Toolbox」 VK_EXT_device_fault

65



● Can provide great information on VK_ERROR_DEVICE_LOST
○ Unfortunately still not supported everywhere

「Toolbox」VK_EXT_device_fault

66



● Can provide great information on VK_ERROR_DEVICE_LOST
○ Unfortunately still not supported everywhere

「Toolbox」 VK_EXT_device_fault

67



● Can provide great information on VK_ERROR_DEVICE_LOST
○ Unfortunately still not supported everywhere

「Toolbox」 VK_EXT_device_fault

68



● Even simpler options - just use Crash Diagnostic Layer
○ See Jeremy’s talk after me

「Toolbox」 VK_EXT_device_fault

69



● Many other tools I didn’t have time to mention
○ RenderDoc
○ Crash Diagnostic Layer
○ GPU Reshape
○ Vendor specific tools

■ Nsight
■ RGP
■ Etc

○ Platform specific tools
■ Android GPU Inspector (AGI)

The toolbox is large

70

https://renderdoc.org/
https://github.com/LunarG/CrashDiagnosticLayer
https://gpuopen.com/gpu-reshape/
https://developer.nvidia.com/nsight-graphics
https://gpuopen.com/rgp/
https://developer.android.com/agi


Takes a village to raise good debugging

Add support to use 
debug extensions

Tools

Add debug 
extensions

Hardware / Drivers

Use the tools and
request features

Applications

71



Takes a village to raise good debugging

Add support to use 
debug extensions

Tools

Add debug 
extensions

Hardware / Drivers

Use the tools and
request features

Applications“We want better 
message on 
device lost!”

72



Takes a village to raise good debugging

Add support to use 
debug extensions

Tools

Add debug 
extensions

Hardware / Drivers

Use the tools and
request features

Applications

Here is 
VK_EXT_device_fault

(Thanks Ralph!)

73



Takes a village to raise good debugging

Add support to use 
debug extensions

Tools

Add debug 
extensions

Hardware / Drivers

Use the tools and
request features

Applications

CDL adds support

74



Takes a village to raise good debugging

Add support to use 
debug extensions

Tools

Add debug 
extensions

Hardware / Drivers

Use the tools and
request features

Applications

Uses CDL and gets 
better error messages
75



● Tell me your feedback what tools you want!
○ After the talk

○ Online

○ Over coffee if you are in the Raleigh, NC area!

● Community feedback helps drives a lot of decisions

Final Reminder

76



Thank you!

Download this
Presentation

https://khr.io/1cr

Actions
Take the Annual 

Developers 
Survey

https://khr.io/1cq

Talk to us and 
get Swag!

Visit the
LunarG Sponsor Table

Survey Results 
➔ Are shared with the Khronos 

Vulkan Working Group
➔ Are used to drive 

development priorities 
throughout 2025

Survey Closes
Wednesday, Feb. 19, 2025 

(GMT—7)

Your Feedback 
Matters!

77


