‘ Y . The 7t Vulkan Developer Conference
Vu I .(an ISed 2 02 5 Cambridge, UK | February 11-13, 2025

Crash Diagnostic Layer

Jeremy Gebben
LunargG, Inc.

Who am I?

Jeremy Gebben
LunarG

At LunarG for the past 4 years
o Validation Layer
o Synchronization2 emulation layer
Ex Kernel Mode Driver dev
o Early / mid Android era
o GPU hangs roll down hill
Ex Graphics Software Architect
o “Hey HW team, why can’t we have
nice things?”
Lots of non-GPU embedded experience
o Can you debug with LEDs?

Overview of Crash Diagnostic Layer

e Provides ‘glue code’ for debugging
VK_ERROR_DEVICE_LOST errors
Windows, Linux and Android supported
Works on many devices
Lightweight (~5% perf hit)
“Beta” in the SDK but we think it is ready to use

Based on Google Stadia

https://github.com/googlestadia/gfr

What can CDL do?

Track forward progress of queue submission and command buffer processing
Interpret fault information from the driver
Manipulate the command stream
o Add checkpoints, for command buffer forward progress
© Add pipeline barriers
Dump state to the filesystem in YAML format
CANNOT debug within a shader invocation

Extension support

Qualcomm

Samsung

VK_EXT device fault

=

VK _EXT _device address_binding_report

=

VK NV _device diagnostic_checkpoints

VK_AMD buffer_marker

VK_AMD _device _coherent_memory

\What happens when a GPU crashes?
(user view)

Error dialog from app, driver, or OS
Application just vanishes

Screen goes black momentarily

Screen goes black forever

X session gets logged out

Kernel panic / BSOD

Device becomes unresponsive and very
warm

O Settings

Application has been blocked from accessing
Graphics hardware.

Application cdl_tests.exe has been blocked from
accessing Graphics hardware.

JIT o© !liaill o

\What happens when a GPU crashes?
(app view)

Restart
rendering

Vulkan returns
DEVICE_LOST Exit Nicely
error

Do
something

\What happens when a GPU crashes?
(driver view)

Timeout
waiting for
something

(hang)

GPU
Error/Fault
interrupt

|dentify

“guilty”
application

Return
DEVICE_LOST
to any Vulkan
calls

Reset GPU
hardware

Continue
processing work
from “innocent”

applications

Why is GPU crash debugging so hard?

e Pre-Vulkan graphics APIs didn’t consider crashing possible
o GPU crash == driver or HW bug! Driver must validate EVERYTHING

o Full screen games -> No concurrent use of the GPU, no fault recovery features"

LUN/\R)C..

Why is GPU crash debugging so hard?

e Massive concurrency
o How do you single step through 1 million fragment shader invocations?
o How much state do you save after a crash?

o Some problems go away when debugging

Why is GPU crash debugging so hard?

e Intellectual property
o For some GPUs, hardware information is not publicly available
o Large architecture differences between different GPU designs

o Debug features aren’t always high priority

How to use CDL

v VK_LAYER_LUNARG_crash_diagnostic
Get the SDK Watchdog timeout (ms)

Start vkconfig N D“rg"tﬁ'efp th
utput Pa

Choose the Crash Diagnostic Dump queue submissions Running
configuration Dump command buffers Running

Dump commands Running

Crash Something Dump shaders Off
g v Logging

Look gt dump files . e

o Linux:~/cdl/.. Error

o Windows: %USERPROFILE%\cd1\. . . grr\l’faoming

o Android: (] Verbose
/sdcard/data/Android/<appname>/.. LOg Teiname SHier
(] Enable Tracing
(] Enable semaphore log tracing.

v State Tracking
() Synchronize commands
(] Instrument all commands
Track semaphores

File Issues!

https://github.com/LunarG/CrashDiagnosticLayer

Log message example

00:00:00.008 CDL INFO: Version 1.3.289 enabled. Start time tag: 2024-067-03-102527
00:00:00.008 CDL INFO: Begin Watchdog: 30000ms
00:00:00.076 CDL WARNING: No VK_AMD_device_coherent_memory extension, results may not be as accurate as
possible.
00:00:00.076 CDL WARNING: No VK_EXT_device_address_binding_report extension, DeviceAddress information-
will not be available.
00:00:32.236 CDL INFO: Completed sequence number has impossible value: -1 submitted: 4700 VkQueuei—=m
0x00000291204AD320[], VkSemaphore: 0x00000291208C6E70]]
00:00:32.237 CDL INFO: Completed sequence number has impossible value: -1 submitted: O VkQueue:
0x00000291206072CO[], VkSemaphore: ©x00000291208C6210]]
00:00:32.237 CDL ERROR: Device error encountered and log being recorded

Output written to: "C:\\Users\\jgebb\\cdl\\2024-07-63-102527\\cd1l_dump.yaml"

LUN/\R)C..

Forward progress

e Evidence that the GPU is still processing work

e |nthedriver

O Getting ‘work complete’ interrupts
o Value of a counter changing in a register or memory counter

o Lack of fault interrupts

e In an application

o Various Vulkan wait calls completing . _
B But.. vkDeviceWaitldle() and vkQueueWaitldle() don't ever time out—s

o Timeline semaphore or fence state changing >

LUN/\R)C..

Watchdog timer

e Monitors application activity and triggers a dump if application appears “stuck”
e Assumption: a non-stuck application will periodically submit new work to the GPU

e Reasons to turn off

o If using a debugger, the watchdog may fire because the application is stopped
© Some drivers have their own watchdog timer

o Non-standard use cases like long running compute jobs

Submission state tracking

Sp— Y

Signal Tracking
Sem

Cmd Buffer

Cmd Buffer VkSubmitinfo Y Cmd Buffer

Signal Tracking
Sem

T % Gma Buffer
Split up submissions and write a Slgnagrackmg
per-queue timeline semaphore after em

every CB VkSubmitinfo gmese Signal Sems
LUN/\R)C..

Command Buffer checkpoints

Reminder: multiple commands can be executing at the same time!
Counters that track progress within a command buffer
Write values somewhere after ‘interesting’ commands
Written at the TOP_OF_PIPE and BOTTOM_OF_PIPE pipeline stages.
o TOP_OF _PIPE - command has started executing
o BOTTOM_OF PIPE - command has finished execution

Command Buffer checkpoints
(VK_AMD _buffer _marker)

vkCmdBeginRendering()
vkCmdBindDescriptorSets()
vkCmdBindVertexBuffer()

vkCmdBindPipeline() /v vkCmdWriteBufferMarkerAMD(TOP_OF_PIPE, id)

vkCmdDraw() \ vkCmdDraw()

vkCmdEndRendering() vkCmdWriteBufferMarkerAMD(BOTTOM_OF_PIPE, id)

Writes arbitrary values to a buffer when the pipeline stage is reached by the -
command :

Requires VK_AMD_device_coherent_memory for accurate reporting during a
crash

But values for completed command buffers are always written LUN/\RX].

Command Buffer checkpoints
(VK_NV _device_diagnostic_checkpoints)

vkCmdBeginRendering()
vkCmdBindDescriptorSets()
vkCmdBindVertexBuffer()

-

vkCmdBindVertexBuffer()

vkCmdDraw(\i vkCmdDraw()

)
vkCmdEndRendering() vkCmdSetCheckpointNV(id)

-

A single command writes both the TOP_OF PIPE and BOTTOM_OF_PIPE
values r

App can call vkGetQueueCheckpointDataNV() to retrieve checkpoint info
Checkpoints in a crashing CB are usually more accurate
But checkpoints for completed CBs are not reported LUN/\qu

CDL checkpoint output

- # Command:
id: 17
checkpointValue: 0x00000012
name: vkCmdBeginDebugUtilslLabelEXT
state: COMPLETED

Labels:
- Render Mesh
Parameters: (...)
message: "'>>>>>>>>>>>>>> LAST COMPLETE COMMAND <<<<<<<<<<<<<<'"

(more commands)

- # Command:
id: 24
checkpointValue: 0x00000019
name: vkCmdDrawIndexed
state: INCOMPLETE
labels:
- Render Mesh
parameters:
indexCount: 8511627
instanceCount: 1
firstIndex: 0
vertexOffset: ©
firstInstance: ©
internalState:
pipeline: {}
descriptorSets: []
message: L V.V V.V.V.V.V.V.V.V.V.V.V. LAST STARTED COMMAND AAAAAAAAAAAAAAN'T

GPU faults

e GPU Device Addresses are usually virtual memory
© Most modern GPUs have some sort of MMU
o Page faults are generated for invalid memory accesses

e VK_EXT_device_fault
o Provides details about GPU page faults

o Faulting address range, type of memory access (read, write, execute)
o Can provide vendor specific fault information

e VK_EXT_device_address_binding_report
o Provides notifications about changes to the GPU address space

o Includes both user-visible objects (eg. buffer, image) and internal driver « *
objects -

\-'

LUN/\R)C..

CDL Device Fault output - buffer overrun

DeviceFaultInfo:
description: GPU fault
faultAddressRanges:
- type: Invalid Read
begin: 0x000000035330A600
end: Ox000000035330AFFF
priorAddressRecord:
begin: 0x00000003531B4D00
end: Ox000000035330A600
type: VkDeviceMemory
handle: ©0x000001CDA3359F10]]
currentlyBound: true

CDL Device Fault output - use after free

DeviceFaultInfo:
description: GPU fault
faultAddressRanges:
- type: Invalid Read
begin: 0x00000003531B4D00
end: 0x00000003531BADFF
matchingAddressRecords:
begin: 0x00000003531B4D00
end: 0x000000035330A600
type: VkDeviceMemory
handle: ©0x000001CDA3359F10]]
currentlyBound: false

CDL Device Fault - bad address

DeviceFaultInfo:
description: GPU fault
faultAddressRanges:
- type: Invalid Read
begin: 0x00000BADDEADBOOO
end: Ox00000BADDEADBFFF
priorAddressRecord:
begin: 0x00000003531B4D06
end: Ox000000035330A600
type: VkDeviceMemory
handle: ©0x000001CDA3359F10[]
currentlyBound: true

Sync after commands

e Insert a pipeline barrier after each checkpoint

o srcStageMask = dstStageMask = ALL_COMMANDS
o srcAccessMask = MEMORY_WRITE, dstAccessMask = MEMORY_READ

e This limits how many commands can execute in parallel
© In one sample trace, this reduces the number of number of running
commands from ~180 to 1
e This will make some GPU crashes stop reproducing,
o likely means the application is missing synchronization

® Currently only works with dynamic rendering

Sync after commands

vkCmdBeginRendering() peeesammme Deep copy pRenderinginfo

vkCmdBindDescriptorSets()
vkCmdBindVertexBuffer()
vkCmdBindVertexBuffer()
vkCmdDraw() vkCmdDraw()
vkCmdEndRendering() vkCmdSetCheckpointNV(id)
vkCmdEndRendering()

vkCmdPipelineBarrier()

vkCmdBeginRendering(saved rendering_info)

Debug utils

CDL supports VK_EXT_debug_utils and VK_EXT_debug_marker
Object names are printed in the dump file
Command labels are printed for every command

Log messages can be sent to VK_EXT debug_utils or VK_EXT debug_report

message callbacks

Thank youl

Actions

. Take the Annual
Download this . Talk to us-and Developers*- Your Feedback
Presentation - getSwagl —Survey Matters!

£

- ' e . Survey Results

=> Are shared with the Khronos
Vulkan Working Group

=> Are used to drive

development priorities
throughout 2025

v Survey Closes

Visit the Wednesday, Feb. 19, 2025
https://khr.io/1cr LunarG Sponsor Table https://khr.io/1cq (GMT—-7)

30

