
The 7th Vulkan Developer Conference
Cambridge, UK | February 11-13, 20252025

Crash Diagnostic Layer

Jeremy Gebben
LunarG, Inc.

Jeremy Gebben
LunarG

Who am I?

2

● At LunarG for the past 4 years
○ Validation Layer
○ Synchronization2 emulation layer

● Ex Kernel Mode Driver dev
○ Early / mid Android era
○ GPU hangs roll down hill

● Ex Graphics Software Architect
○ “Hey HW team, why can’t we have

nice things?”
● Lots of non-GPU embedded experience

○ Can you debug with LEDs?

● Provides ‘glue code’ for debugging

VK_ERROR_DEVICE_LOST errors

● Windows, Linux and Android supported

● Works on many devices

● Lightweight (~5% perf hit)

● “Beta” in the SDK but we think it is ready to use

● Based on Google Stadia Graphics Flight Recorder

Overview of Crash Diagnostic Layer

3

https://github.com/googlestadia/gfr

What can CDL do?

● Track forward progress of queue submission and command buffer processing

● Interpret fault information from the driver

● Manipulate the command stream

○ Add checkpoints, for command buffer forward progress

○ Add pipeline barriers

● Dump state to the filesystem in YAML format

● CANNOT debug within a shader invocation

4

Extension support

AMD ARM Intel NVidia Qualcomm Samsung

VK_EXT_device_fault ✅ ✅ ✅ ✅ ✅

VK_EXT_device_address_binding_report ✅ ✅ ✅ ✅ ✅ ✅

VK_NV_device_diagnostic_checkpoints ✅ ✅

VK_AMD_buffer_marker ✅ ✅ ✅ ✅ ✅

VK_AMD_device_coherent_memory ✅ ✅

5

GPU Crashes

6

What happens when a GPU crashes?
(user view)
● Error dialog from app, driver, or OS
● Application just vanishes
● Screen goes black momentarily
● Screen goes black forever
● X session gets logged out
● Kernel panic / BSOD
● Device becomes unresponsive and very

warm

7

What happens when a GPU crashes?
(app view)

Do
something

Vulkan returns
DEVICE_LOST

error

Restart
rendering

Exit Nicely

Crash

8

What happens when a GPU crashes?
(driver view)

Timeout
waiting for
something

(hang)

GPU
Error/Fault
interrupt

Identify
“guilty”
application

Return
DEVICE_LOST
to any Vulkan
calls

Reset GPU
hardware

Continue
processing work
from “innocent”
applications

9

Why is GPU crash debugging so hard?

● Pre-Vulkan graphics APIs didn’t consider crashing possible

○ GPU crash == driver or HW bug! Driver must validate EVERYTHING

○ Full screen games -> No concurrent use of the GPU, no fault recovery features

10

Why is GPU crash debugging so hard?

● Massive concurrency

○ How do you single step through 1 million fragment shader invocations?

○ How much state do you save after a crash?

○ Some problems go away when debugging

11

Why is GPU crash debugging so hard?

● Intellectual property

○ For some GPUs, hardware information is not publicly available

○ Large architecture differences between different GPU designs

○ Debug features aren’t always high priority

12

Using CD

13

How to use CDL
● Get the SDK
● Start vkconfig
● Choose the Crash Diagnostic

configuration
● Crash something
● Look at dump files

○ Linux: ~/cdl/…
○ Windows: %USERPROFILE%\cdl\...
○ Android:

/sdcard/data/Android/<appname>/…

● File Issues!
○ https://github.com/LunarG/CrashDiagnosticLayer

14

https://github.com/LunarG/CrashDiagnosticLayer

Log message example

00:00:00.008 CDL INFO: Version 1.3.289 enabled. Start time tag: 2024-07-03-102527
00:00:00.008 CDL INFO: Begin Watchdog: 30000ms
00:00:00.076 CDL WARNING: No VK_AMD_device_coherent_memory extension, results may not be as accurate as
possible.
00:00:00.076 CDL WARNING: No VK_EXT_device_address_binding_report extension, DeviceAddress information
will not be available.
00:00:32.236 CDL INFO: Completed sequence number has impossible value: -1 submitted: 4700 VkQueue:
0x00000291204AD320[], VkSemaphore: 0x00000291208C6E70[]
00:00:32.237 CDL INFO: Completed sequence number has impossible value: -1 submitted: 0 VkQueue:
0x00000291206072C0[], VkSemaphore: 0x00000291208C6210[]
00:00:32.237 CDL ERROR: Device error encountered and log being recorded

Output written to: "C:\\Users\\jgebb\\cdl\\2024-07-03-102527\\cdl_dump.yaml"

15

Forward progress
● Evidence that the GPU is still processing work
● In the driver

○ Getting ‘work complete’ interrupts
○ Value of a counter changing in a register or memory counter
○ Lack of fault interrupts

● In an application
○ Various Vulkan wait calls completing

■ But… vkDeviceWaitIdle() and vkQueueWaitIdle() don’t ever time out
○ Timeline semaphore or fence state changing

16

Watchdog timer

● Monitors application activity and triggers a dump if application appears “stuck”

● Assumption: a non-stuck application will periodically submit new work to the GPU

● Reasons to turn off

○ If using a debugger, the watchdog may fire because the application is stopped

○ Some drivers have their own watchdog timer

○ Non-standard use cases like long running compute jobs

17

Submission state tracking

VkSubmitInfo

Wait Sems.

Signal Sems

Cmd Buffer

Cmd Buffer

Signal Sems

Wait Sems.VkSubmitInfo

VkSubmitInfo

Signal Tracking
Sem

Cmd BufferVkSubmitInfo

Signal Tracking
Sem

Cmd BufferVkSubmitInfo

Signal Tracking
Sem

Split up submissions and write a
per-queue timeline semaphore after
every CB

18

Command Buffer checkpoints

● Reminder: multiple commands can be executing at the same time!

● Counters that track progress within a command buffer

● Write values somewhere after ‘interesting’ commands

● Written at the TOP_OF_PIPE and BOTTOM_OF_PIPE pipeline stages.

○ TOP_OF_PIPE - command has started executing

○ BOTTOM_OF_PIPE - command has finished execution

19

Command Buffer checkpoints
(VK_AMD_buffer_marker)

vkCmdBeginRendering()

vkCmdBindVertexBuffer()

vkCmdBindDescriptorSets()

vkCmdDraw()

vkCmdEndRendering()

vkCmdBindPipeline() vkCmdWriteBufferMarkerAMD(TOP_OF_PIPE, id)

vkCmdWriteBufferMarkerAMD(BOTTOM_OF_PIPE, id)

vkCmdDraw()

● Writes arbitrary values to a buffer when the pipeline stage is reached by the
command

● Requires VK_AMD_device_coherent_memory for accurate reporting during a
crash

● But values for completed command buffers are always written
20

Command Buffer checkpoints
(VK_NV_device_diagnostic_checkpoints)

vkCmdBeginRendering()

vkCmdBindVertexBuffer()

vkCmdBindDescriptorSets()

vkCmdDraw()

vkCmdEndRendering()

vkCmdBindVertexBuffer()

vkCmdSetCheckpointNV(id)

vkCmdDraw()

● A single command writes both the TOP_OF_PIPE and BOTTOM_OF_PIPE
values

● App can call vkGetQueueCheckpointDataNV() to retrieve checkpoint info
● Checkpoints in a crashing CB are usually more accurate
● But checkpoints for completed CBs are not reported

21

CDL checkpoint output
- # Command:
id: 17
checkpointValue: 0x00000012
name: vkCmdBeginDebugUtilsLabelEXT
state: COMPLETED
Labels:
- Render Mesh

Parameters: (...)
message: "'>>>>>>>>>>>>>> LAST COMPLETE COMMAND <<<<<<<<<<<<<<'"

(more commands)

- # Command:
id: 24
checkpointValue: 0x00000019
name: vkCmdDrawIndexed
state: INCOMPLETE
labels:
- Render Mesh

parameters:
indexCount: 8511627
instanceCount: 1
firstIndex: 0
vertexOffset: 0
firstInstance: 0
internalState:
pipeline: {}
descriptorSets: []

message: "'^^^^^^^^^^^^^^ LAST STARTED COMMAND ^^^^^^^^^^^^^^'"

22

GPU faults
● GPU Device Addresses are usually virtual memory

○ Most modern GPUs have some sort of MMU
○ Page faults are generated for invalid memory accesses

● VK_EXT_device_fault
○ Provides details about GPU page faults
○ Faulting address range, type of memory access (read, write, execute)
○ Can provide vendor specific fault information

● VK_EXT_device_address_binding_report
○ Provides notifications about changes to the GPU address space
○ Includes both user-visible objects (eg. buffer, image) and internal driver

objects

23

CDL Device Fault output - buffer overrun

DeviceFaultInfo:
description: GPU fault
faultAddressRanges:
- type: Invalid Read
begin: 0x000000035330A600
end: 0x000000035330AFFF
priorAddressRecord:
begin: 0x00000003531B4D00
end: 0x000000035330A600
type: VkDeviceMemory
handle: 0x000001CDA3359F10[]
currentlyBound: true

24

CDL Device Fault output - use after free

DeviceFaultInfo:
description: GPU fault
faultAddressRanges:
- type: Invalid Read
begin: 0x00000003531B4D00
end: 0x00000003531B4DFF
matchingAddressRecords:
begin: 0x00000003531B4D00
end: 0x000000035330A600
type: VkDeviceMemory
handle: 0x000001CDA3359F10[]
currentlyBound: false

25

CDL Device Fault - bad address

DeviceFaultInfo:
description: GPU fault
faultAddressRanges:
- type: Invalid Read
begin: 0x00000BADDEADB000
end: 0x00000BADDEADBFFF
priorAddressRecord:
begin: 0x00000003531B4D00
end: 0x000000035330A600
type: VkDeviceMemory
handle: 0x000001CDA3359F10[]
currentlyBound: true

26

Sync after commands
● Insert a pipeline barrier after each checkpoint

○ srcStageMask = dstStageMask = ALL_COMMANDS
○ srcAccessMask = MEMORY_WRITE, dstAccessMask = MEMORY_READ

● This limits how many commands can execute in parallel
○ In one sample trace, this reduces the number of number of running

commands from ~180 to 1
● This will make some GPU crashes stop reproducing,

○ likely means the application is missing synchronization
● Currently only works with dynamic rendering

27

Sync after commands

vkCmdBeginRendering()

vkCmdBindVertexBuffer()

vkCmdBindDescriptorSets()

vkCmdDraw()

vkCmdEndRendering()

vkCmdBindVertexBuffer()

vkCmdSetCheckpointNV(id)

vkCmdDraw()

vkCmdEndRendering()

vkCmdPipelineBarrier()

vkCmdBeginRendering(saved_rendering_info)

Deep copy pRenderingInfo

28

Debug utils
● CDL supports VK_EXT_debug_utils and VK_EXT_debug_marker

● Object names are printed in the dump file

● Command labels are printed for every command

● Log messages can be sent to VK_EXT_debug_utils or VK_EXT_debug_report

message callbacks

29

Thank you!

Download this
Presentation

https://khr.io/1cr

Actions
Take the Annual

Developers
Survey

https://khr.io/1cq

Talk to us and
get Swag!

Visit the
LunarG Sponsor Table

Survey Results
➔ Are shared with the Khronos

Vulkan Working Group
➔ Are used to drive

development priorities
throughout 2025

Survey Closes
Wednesday, Feb. 19, 2025

(GMT—7)

Your Feedback
Matters!

30

