‘ Y . The 7t Vulkan Developer Conference
Vu I .(an ISed 2 02 5 Cambridge, UK | February 11-13, 2025

So you want to write a Vulkan Renderer in 2025

Charles Giessen
LunargG, Inc.

Who am I?

e Started learning Vulkan in 2017
e Joined LunarG in 2019

o Maintain the Vulkan-Loader, Api dump,
VkCube, Vulkaninfo, Vulkan-Utility-Libraries,
SDK development, & more %

e Joined the Vulkan Community Discord in 2q18

0 Moderator since ~2021

Charles Giessen
LunarG

GPU SOFTWARE SPECIALISTS

Disclaimers

Strictly my opinions
My experience is with Desktop Vulkan
© Android is my blindspot

Vulkan is MASSIVE
o Cannot cover everything!

Not covering rendering algorithms
o Focusing on the Vulkan parts of rendering

Let's get started!

How to design a Vulkan Renderer

Pick the API Version
. Pick the extensions to use

- Profiti

What version to target?

Which version to target?

e Whatever your hardware minimum is!

e Depends on target platform
o Desktop (Linux & Windows) can reliably use 1.3
o Android lags behind with 1.1
© MacOS (MoltenVK) is 1.2 but supports most everything in 1.3

e 14 still too new to recommend

Three different version numbers

e Instance

© From the Vulkan-Loader

o vkEnumeratelnstanceVersion (Added in 1.1)
e Physical Device

© From the GPU Driver

o VKkPhysicalDeviceProperties:apiVersion
e Application

o Defined by the application

o VkApplicationIinfo:apiVersion

VkApplicationInfo appInfo{};
appInfo.apiVersion = VK MAKE API VERSION(©0,1,X,0)

LUN/\RX]

What extensions to use?

Two Types of Extensions

e Device

O
@
O

Vast majority
From vkEnumerateDeviceExtensions
Many have been promoted into Core Versions

e |Instance

@)

O
O
O

Small number

From vkEnumeratelnstanceExtensions
VK_EXT_debug_utils

WSI: VK_KHR_<platform>_surface & VK_KHR_surface

300+ published extensions

e Every extension solves a problem
o Some fix just one site
o Other rewrite half the API

e Depends on many things

o Hardware minimum

o Target version

o Supported platforms

o Maintenance constraints

e Way too many to cover each individually

But which to choosel!?

Overwhelming to read about each one

Many are aliases
o To core functionality
o To other extensions
Many have dependencies on other extensions

In addition, must enable feature bools
o VKkPhysicalDeviceFeatures2 pNext chain
o Core features in VkPhysicalDeviceVulkan<Version#>Features
o Extension features in
VkPhysicalDeviceVulkan<Ext_name>Features<Ext_suffix>

More specifics on checking & enabling extensions
O

https://github.com/KhronosGroup/Vulkan-Guide/blob/main/chapters/enabling_extensions.adoc
https://github.com/KhronosGroup/Vulkan-Guide/blob/main/chapters/enabling_extensions.adoc

Vulkan-Profiles

e Profiles define explicit extension & features requirements
o Expressed in JSON
Example: VP_KHR_roadmap_2024

o "“This roadmap profile is intended to be supported by newer devices :
shipping in 2024 across mainstream smartphone, tablet, laptops; console
and desktop devices.” ,

Profiles-Library sets up VkDevice according to a given Profile
Profiles are a great help in picking extensions & features

o Just use what's in a profile
o Or use the profile directly!

LUN/\R)G.

Why not just use Vulkan 1.0?

Vulkan 1.0

Single target, no guesswork
Supported everywhere

Just learning 1.0 is hard enough
o New things means more to learn

Huge departure from OpenGL

New concepts introduced
Render Passes
Synchronization
Descriptor Sets
Pipelines
And more!

LUN/\R)G.

New paradigms, new problems

e Not all parts of Vulkan 1.0 are a success
o Clunky interfaces
o Complex interactions
o Missing capabilities
e To be expected for an entirely new API!
e Picking a version and extensions is hard

e Yetusing Vulkan 1.0 is even harder

We aren’t stuck with Vulkan 1.0

Good news is that this is 2025, not 2016

Most of the glaring have been fixed

Many more problems fixed in the following years

The rest of the slides discuss these problems and their
solutions

Immutable Pipelines

What even i1s a pipeline?

Compiled binary
Of p]pe“ne]nPUtS Vertex"Shader

—
B d ke once | Tessellation Control Shader }— | Descriptor Sets

¥
Tessellation Primitive Generator
o Costly | * |
I Tessellation Evaluation Shader I-—

Draw Dispatch
¥

|
| Input Assembler
|

Compute Shader

Bind many times

o Cheap |
. Vertex Post*-Processmg |
EXChange t]me for Rasterization |

¥
Early Per-Fragment Tests]-—F
space +

Geometry Shader <

Fragment Shader H Fixed Function Stage
¥ H
Late Per-Fragment Tests . Shader Stage
¥ '
Blending

What's the catch?

e Pipelines require everything to be known ahead of time

e Each combination of inputs requires a dedicated pipeline
© Shader, topology, blend mode, vertex layout, cull mode, etc

Causes a combinatorial explosion of variants
o 10,000's of pipelines for shipping titles

Pipeline creating takes time
o Creates stutters if done just-in-time

VkDynamicState

Not everything has to be immutable
Set desired state while recording command buffers
Over 70 states can be dynamic

Great reference for all of it:
@)

https://github.com/KhronosGroup/Vulkan-Guide/blob/main/chapters/dynamic_state_map.adoc
https://github.com/KhronosGroup/Vulkan-Guide/blob/main/chapters/dynamic_state_map.adoc

Reducing compilation overhead

o VK_EXT_graphics_pipeline_libraries
o Divide graphics pipeline into multiple parts
o Link them into single binary right before binding
o Diminishes cost of many variants

e VK_EXT_shader_object

o Ditch pipelines entirely
o Bind compiled shader stages
o Currently only available on AMD & Nvidia

e Jury is still out on best way to do this

Render Passes

Render Passes and Sub Passes

All drawing commands happen inside a “renderpass”
Acts as a pseudo render graph

Allows tiling GPU'’s to use memory efficiently
Describes image attachments

Defines the subpasses

Declare dependencies

between subpasses

Source: Sascha Willems
Vulkan input attachments and sub passes

LUNAR KU

Great in theory...

Not so great to use in practice
Single object with many responsibilities
o Defines attachments
o Defines memory barriers for attachments
o Defines subpasses that read from and write to attachments
Hard to architect into a renderer
o Yet another input for pipelines
Main benefit is for tiling based GPU'’s
o Commonly found in mobile
Requires using VkFramebuffers
o Only exists to combine images and renderpasses

Introducing Dynamic Rendering

1.3's dynamicRendering feature, VK_KHR_dynamic_rendering
Replaces VkRenderpass
Describe renderpasses inline with command buffer recording

Greatly simplifies application architecture
o Creating pipelines only needs attachment descriptions

Tiling GPU’s aren’t left behind either
1.4 dynamicRenderinglLocalRead,

VK_KHR_dynamic_rendering_local_read
o Enables efficient multi-pass rendering

Descriptor Sets

Descriptor Sets

Organize shader inputs into “sets” by update frequency
Update each set together

Bind sets as needed

Reasonable API for the gamut of existing hardware
Small snippet of descriptor API:

VkDescriptorPool : VkDescriptorSetAllocateInfo

VkDescriptorSet

pPoolSizes pSetLayouts vkAllocateDescriptorSets(...) VkDescriptorSetLayout

VkDescriptorPoolSize

VkDescriptorSetLayout VkDescriptorSet

type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER ' e __...---/>| VkDescriptorSetLayout
descriptorCount = 2 copies of .

VkDescriptorSetLayout

VkDescriptorPoolSize

lote: There are frames-in-flight number
(e.g. 2) of descriptor sets because
this reso

urce belongs to each
frame. Other descriptor sets might
0 L) belong to each object, like
> Mar) (textures.

flags =
maxSets =

Descriptor Difficulties

Cannot update descriptors after binding in a command buffer
All descriptors must be valid, even if not used

Descriptor arrays must be sampled uniformly

o Different invocations can’t use different indices
o Can sample “dynamically uniform”, eg runtime based index

Upper limit on descriptor counts
Discourages GPU-Driven rendering architectures

Solution Space

e Descriptor Indexing
1.3, optional in 1.2, or VK_EXT_descriptor_indexing
Update descriptors after binding
Update unused descriptors
Relax requirement that all descriptors must be valid, even if unused
Non-uniform array indexing

e Buffer Device Address
o 13, optionalin 1.2, or VK_KHR_buffer_device_address
o Directly access buffers through addresses without a descriptor

e Descriptor Buffers - VK_EXT_descriptor_buffer

© Manage descriptors directly
o Similar to D3D12's descriptor model

LUN/\R)G.

Shader Memory Layout

What is the equivalent C Buffer of this?

(binding 0) block {
float a;
vecZ2 b;
vecZ C;

rr

And of this?

Trick question!

e Didn't specify which layout to use std140 / std430
o “Extended Alignment” AKA std140
o "Base Alignment” AKA std430
o “Scalar Block Layout” AKA scalar Strugog;B;Tfer {

e Each defines offset, alignment and float padding;
padding Aee Lf

vec2 C;

® So whiebcshopddrigelitisedc2, vec3, vecs, etc) e [T

LUN/\R)G.

Scalar block layout!

It uses C-like structure rules
Matches expectations

Enables easy sharing of data between host and device
o No tedious padding and offsetting!

Very commonly supported

Great reference for all shader memory layouts
O

https://github.com/KhronosGroup/Vulkan-Guide/blob/main/chapters/shader_memory_layout.adoc
https://github.com/KhronosGroup/Vulkan-Guide/blob/main/chapters/shader_memory_layout.adoc

Synchronization

Synchronization

By far the hardest part of Vulkan
Many different kinds of sync

© Fence, Binary Semaphore, Event, Barrier
Good synchronization are critical to

good performance

Timeline Semaphores

Streamlines Host and Device sync

Replaces fences and (binary) semaphores

Is @ monotonically increasing uint64_t

Have work wait for a value, increment to signal work is done
Able to “Wait before signal”

Does not currently work with swap chains

3D

Timeline (9] [10] (1]

2 Compute Compute Compute Compute
Physics P P P P

Copyright © 2018 The Khronos® Group Inc.

Synchronization 2

Improve usability and simplify the synchronization interface
Specifies pipeline stages and access flags together

More efficient Events

Perform image memory barriers without transitions

Makes using synchronization just that much easier

Exhaustive discussion of the changes here
O

https://github.com/KhronosGroup/Vulkan-Guide/blob/main/chapters/extensions/VK_KHR_synchronization2.adoc
https://github.com/KhronosGroup/Vulkan-Guide/blob/main/chapters/extensions/VK_KHR_synchronization2.adoc

Miscellaneous Features

Shader Draw Parameters

e Adds additional shader builtins

o Baselnstance
o BaseVertex
o Drawlndex

e Useful for indexing into buffers

Indirect Rendering

® Generate draw commands on GPU
o EX:Frustum culling

e But how many commands to use?
e DrawlndirectCount allows sourcing the count from GPU buffer_ "

VK_EXT_device_generated_commands

e New extension for GPU driven techniques

e Does way more than sourcing drawing parameters from GPU
Bind Vertex & Index buffers
Push constants
Pipelines & Shader objects
Draw calls
Compute dispatches
Raytracing
Mesh shading

Conclusion

Conclusion

e Vulkan-Guide is awesome
e Vulkan 1.0 was just a starting point

e The new stuff is worth the time and effort
o All added for good reasons

Thank youl

Actions

. Take the Annual
Download this . Talk to us-and Developers*- Your Feedback
Presentation - getSwagl —Survey Matters!

£

- ' e . Survey Results

=> Are shared with the Khronos
Vulkan Working Group

=> Are used to drive

development priorities
throughout 2025

v Survey Closes

Visit the Wednesday, Feb. 19, 2025
https://khr.io/1cr LunarG Sponsor Table https://khr.io/1cq (GMT—-7)

46

