
Correct Vulkan Synchronization
With Extended Synchronization
Validation

John Zulauf
LunarG, Inc

-

Understanding Vulkan Synchronization

John Zulauf, LunarG Inc.

Senior Graphics Software Engineer with 30 years of graphics
experience across numerous platforms -- from kernel drivers to
application development.

Slides are available at:
https://www.lunarg.com/news-insights/white-papers/vulkan-synchroni
zation-validation-tutorial-and-update/

2

https://www.lunarg.com/news-insights/white-papers/vulkan-synchronization-validation-tutorial-and-update/
https://www.lunarg.com/news-insights/white-papers/vulkan-synchronization-validation-tutorial-and-update/

Introduction
● Understanding Vulkan Synchronization

○ Synchronization terminology in the Vulkan spec
○ Some of the new features in VK_KHR_synchronization2 (aka sync2)

● Validating Vulkan Synchronization
○ Capabilities and limitations including alpha functionality
○ Theory of operation
○ Demo
○ Interpreting error messages
○ Frequently found errors

● Q & A

3

Execution Dependencies
● Most Vulkan commands are started in queue submission order but may

execute in any order
○ Even commands using the same pipeline stages!

● The programmer must tell Vulkan when 2 commands depend on each other
○ We do this by defining barriers

● First synchronization scope is what happens before a barrier
○ AKA: srcStageMask

● Second synchronization scope is what happens after a barrier
○ AKA: dstStageMask

4

Memory Dependencies
● GPUs have lots of caches

○ Vulkan defines logical memory access types that correspond to caches that
might be associated with a pipeline stage

○ Cache maintenance operations are required for different stages to ‘see’ the
output of other stages in memory.

● First access scope: memory accesses by commands that happen before the
barrier.

○ AKA: srcAccessMask
○ A barrier does a cache clean (or flush) on any caches used in the first access scope

● Second access scope: memory accesses by commands that happen after the
barrier.

○ AKA: dstAccessMask
○ A barrier does a cache invalidate on any caches used in the first access scope

5

Types of synchronization errors

RAW Read-after-write This occurs when a subsequent operation uses the result of a previous
operation without waiting for the result to be completed

WAR Write-after-read This occurs when a subsequent operation overwrites a memory location
read by a previous operation before that operation is complete. (requires
only execution dependency)

WAW Write-after-write This occurs when a subsequent operation writes to the same set of memory
locations (in whole or in part) being written by a previous operation

WRW Write-racing-write This occurs when unsynchronized subpasses/queues perform writes to the
same set of memory locations

RRW Read-racing-write This occurs when unsynchronized subpasses/queues perform read and
write operations on the same set of memory locations

6

Hello race condition!
 vkCmdCopyBuffer(cb, buffer_a, buffer_b, 1, ®ion); /* a is copy src */
 vkCmdCopyBuffer(cb, buffer_c, buffer_a, 1, ®ion); /* a is copy dst */

Write after read hazard because buffer_a is both src and dst in commands with no execution dependency!

 vkCmdCopyBuffer(cb, buffer_a, buffer_b, 1, ®ion);
 vkCmdPipelineBarrier(cb, VK_PIPELINE_STAGE_TRANSFER_BIT,
 VK_PIPELINE_STAGE_TRANSFER_BIT,
 0, 0, nullptr, 0, nullptr, 0,nullptr);
 vkCmdCopyBuffer(cb, buffer_c, buffer_a, 1, ®ion);

7

Pipeline Stages and Access Masks
● Pipeline stages bits are ordered

○ Logical ordering defined in vulkan spec
○ In srcStageMask, each stage bit also waits for all earlier stages
○ In dstStageMask, each stage bit also blocks all later stages
○ You can often ‘get away’ with only setting some of the bits you are synchronizing

● Access mask bits are independent
○ You need to set ALL bits you are synchronizing
○ BUT, you must explicitly specify each pipeline stage if you want to use an access mask that

requires it. (This is a common source of errors)

8

Pipeline Stage - details
● Was a 32-bit mask, but all bits are used so sync2 made it 64 bits

○ Several extensions require using sync2 or the ‘special’ stage mask bits
○ All bit values in the 32-bit mask have same meaning in the 64-bit mask

● Valid values are limited by
○ Queue Capabilities
○ Enabled extensions & features
○ Being in a renderpass

● Special values
○ NONE, TOP_OF_PIPE, BOTTOM_OF_PIPE - will be discussed separately
○ ALL_COMMANDS - blocks ‘everything’, all stages and some event-related commands
○ ALL_GRAPHICS - all active parts of the graphics pipeline
○ In sync2, several stages expand to multiple new stages

■ e.g. TRANSFER stage is equivalent to (COPY | BLIT | CLEAR | RESOLVE)

9

https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VkPipelineStageFlagBits.html
https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VkPipelineStageFlagBits2KHR.html

Pipeline stage ordering example

1
0

● In srcStageMask:
○ VERTEX_SHADER also waits on all grey stages

● In dstStageMask
○ VERTEX_SHADER also blocks all green stages

TOP_OF_PIPE

DRAW_INDIRECT

VERTEX_INPUT

VERTEX_SHADER

...

FRAGMENT_SHADER

...

BOTTOM_OF_PIPE

Waiting for everything or nothing
● srcStageMask = ALL_COMMANDS blocks or waits for all stages

○ This is wait for idle on the GPU and will often hurt performance

● srcStageMask = NONE or TOP_OF_PIPE
○ Your barrier waits for nothing
○ Can only form an execution dependency chain with the prior barrier with dstStageMask =

ALL_COMMANDS

● dstStageMask = NONE or BOTTOM_OF_PIPE
○ Nothing can wait for your barrier
○ Use srcStageMask = ALL_COMMANDS to form an execution dependency chain

● This comes up when interacting with other parts of Vulkan
○ Semaphores & Fences usually are OK
○ Renderpass implicit SubpassDependencies often go poorly (more later)

11

Access Mask details
● Was a 32-bit mask, but all bits are used so sync2 made it 64 bits

○ Several extensions require using sync2 or the ‘special’ access mask bits
○ All bit values in the 32-bit mask have same meaning in the 64 bit mask

● Valid bits are limited by which bits are set in the corresponding StageMask
○ Eg. PIPELINE_STAGE_TRANSFER allows ACCESS_TRANSFER_READ or WRITE
○ sync2 defines 200+ VUIDs to identify all possible errors

● Special values
○ NONE - no memory access, used to define an execution barrier
○ MEMORY_READ, MEMORY_WRITE - any memory access allowed by StageMask.
○ SHADER_READ- in sync2 expands to (SAMPLER_READ|STORAGE_READ|

UNIFORM_READ)
○ SHADER_WRITE - in sync2 expands to STORAGE_WRITE (which is above 2^32)

12

https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VkAccessFlagBits.html
https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VkAccessFlagBits2KHR.html

Memory Barriers
typedef struct VkMemoryBarrier {
 VkStructureType sType;
 const void* pNext;
 VkAccessFlags srcAccessMask;
 VkAccessFlags dstAccessMask;
} VkMemoryBarrier;

/* sync2 */
typedef struct VkMemoryBarrier2KHR {
 VkStructureType sType;
 const void* pNext;
 VkPipelineStageFlags2KHR srcStageMask;
 VkAccessFlags2KHR srcAccessMask;
 VkPipelineStageFlags2KHR dstStageMask;
 VkAccessFlags2KHR dstAccessMask;
} VkMemoryBarrier2KHR;

13

● A memory barrier synchronizes all memory
accessible by the GPU

● You can use to synchronize buffers and images,
UNLESS you are doing Image Layout Transition
or Queue Family Ownership Transfer

● N barriers can be converted to 1 by or-ing all of
their masks together

● Sync2 makes pipeline stages be part of the
barrier structures instead of separate parameters
to vkCmdPipelineBarrier()

Buffer Barriers - Queue Family Ownership
● Like a MemoryBarrier except

○ Adds a VkBuffer handle
○ Adds srcQueueFamilyIndex, dstQueueFamilyIndex for Queue Family Ownership (QFO) Transfer

● Queue Family Ownership Transfer (also part of Image Memory Barriers)
○ VK_SHARING_MODE_CONCURRENT is usually very slow (for Images only)
○ VK_SHARING_MODE_EXCLUSIVE requires a QFO barrier to switch ownership between one

queue family and another
● QFO Barrier

○ Create a Buffer (or Image) Memory Barrier
○ Submit on src queue, only srcAccessMask used.
○ Submit on dst queue, only dstAccessMask used.
○ However, both PipelineStageMasks are used by both queues
○ Use a Semaphore to synchronize the 2 queues
○ Use the ‘other’ PipelineStageMask to form an execution dependency with the Semaphore wait

or signal operation 14

Image Memory Barriers
● Like a BufferMemoryBarrier except

○ VkImage handle instead of VkBuffer
○ Adds VkImageLayout oldLayout and newLayout to allow Image Layout Transitions

● Image Layout Transitions
○ Re-arrange memory for efficient use by different pipeline stages
○ Happens between 🤯 the first and second execution scopes of the barrier
○ Each subresource of an image can be transitioned independently.

● sync2 adds magic ‘do the right thing’ layouts
○ Avoid the need for providing different layouts for Color, Depth and Stencil Images
○ VK_IMAGE_LAYOUT_READ_ONLY_OPTIMAL_KHR
○ VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL_KHR

15

Renderpass - it is REALLY complicated

16

https://github.com/David-DiGioia/vulkan-diagrams

https://github.com/David-DiGioia/vulkan-diagrams

Renderpass - what to watch out for
● Load and store operations often cause synchronization errors

○ LOAD_OP_DONT_CARE generates WRITE accesses to your attachments

● Rasterization order synchronizes some operations within a subpass
● Pipeline Barriers in a RenderPass are even trickier

○ You need a Subpass self-Dependency (srcSubpass == dstSubpass) that includes all the
pipeline stages your barrier(s) will use

○ Set of allowed pipeline stages is limited

● Internal Subpass Dependencies don’t affect the outside world
○ (srcSubpass and dstSubpass != EXTERNAL)
○ First and second execution scopes only include commands in other subpasses

● Implicit External Subpass Dependencies don’t do what you want, define them
explicitly

17

https://www.khronos.org/registry/vulkan/specs/1.2-khr-extensions/html/chap25.html#primrast-order

Implicit Subpass External Dependencies
/* INITIAL implicit subpass */
VkSubpassDependency implicitDependency = {
 .srcSubpass = VK_SUBPASS_EXTERNAL;
 // First subpass attachment is used in
 .dstSubpass = firstSubpass;
 .srcStageMask = NONE;
 .dstStageMask = ALL_COMMANDS;
 .srcAccessMask = 0;
 .dstAccessMask =
VK_ACCESS_INPUT_ATTACHMENT_READ_BIT |
VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
 .dependencyFlags = 0;
};
/* FINAL implicit subpass is similar,
 * but src and dst are swapped
 */

18

● These are Image Memory Barriers for your attachments
● Inserted by the driver ONLY IF

○ You have initial or final layout transitions.
○ You don’t provide your own dependency

● They wait for or block NOTHING
● Use them as a template but change the external side to

be useful
○ You probably want an execution dependency chain!

● Maybe use different pipeline stages on internal side
instead of ALL_COMMANDS

● Maybe add internal side access bits, but you probably
want at least the default ones.

● Additional Ordering Rules
○ Queue Submission Order
○ Signal Operation Order

● Additional Synchronization Operation
○ Semaphores
○ Fences
○ Host events (not covered)

Inter-Command Buffer Validation

Semaphores
● Synchronization between queue submissions

○ Same or different queues
■ Operations on same queue, queue submit order applies

○ Binary or timeline
● Signalling: First sync/access scope

○ vkQueueSubmit: Stage/Access all operations in “queue submit order”
○ vkQueueSubmit2: All accesses for given stageMask stages
○ vkAcquireNextImageKHR: Acquired image safe for access

● Waiting: Second sync scope
○ vkQueueSubmit: All stages in pWaitDstStageMask entry for semaphore
○ vkQueueSubmit2: All accesses for given stageMask stages

● Binary Semaphore Requirement
○ Waiting for a Semaphore requires previously submitted signalling operation

● Timeline Semaphore – application must ensure
○ Semaphore value is strictly increasing
○ Forward progress occurs (must ensure signal with semaphore value >= waited semaphore values)

Fences
● Host side notification of device operation completion

○ First scope: device operations and access
○ Doesn’t include host-device memory coherence (needs additional barriers)

● Signaled on Device operation
○ Completed Queue submission (Command Buffers in Queue Submit Order)
○ Completed QueueBind operation
○ Acquired Swapchain Image

● Waited on by the host: vkWaitForFences
● Queried by host: vkGetFenceStatus
● Reset to unsignaled: vkResetFences

Validating Vulkan Synchronization

– with information about new queue submit time alpha functionality

22

Synchronization Validation
● Detects Hazard From Insufficient Synchronization Operations

○ Hazard -- any access were the access pattern is not well defined
○ Byte Resolution Access/Synchronization Tracking
○ All vkCmd types (transfer, draw, renderpass, compute, resolve, etc)
○ Sync2 support

● Inter-Command Buffer Support
○ vkCmdExecuteCommands
○ Queue Submit (alpha)
○ Fence (alpha)
○ Queue|Device Wait Idle (alpha)

23

Synchronization Validation Limitations
● Limited aliasing detection (like kinds of resources)
● Binary Semaphore only
● No Swapchain operation/resource tracking
● No Host side resource tracking
● No swizzle support
● Not GPU Assisted (doesn’t know shader execution time information)
● Limited extension support

Hazard Types (common)
● Read-after-write (RAW)

○ Operation uses the result of a previous operation without waiting for the
result to be completed.

● Write-after-read (WAR)
○ Operation overwrites a memory location read by a previous operation

before operation is complete.
● Write-after-write (WAW)

○ Operation writes to the same set of memory locations being written by a
previous operation.

25

Hazard Types (Render Pass / Inter-queue)
● Write-racing-write (WRW)

○ Operations on unsynchronized subpasses/queues perform writes to the same set of memory
locations.

● Read-racing-write (RRW)
○ Operations on unsynchronized subpasses/queues perform read and write operations on the

same set of memory locations

26

Synchronization Validation Theory of Operation
● Tracks access history

○ At each byte
○ Operation Type (stage, access)
○ Stores “first” and “most recent” only (more below)

● Applies synchronization operations to access history
○ Identifies “safe” subsequent access operations
○ Track dependency chaining

● Validates accesses of each subsequent operation to access history
○ The stage and access for each are compared previous access and synchronization
○ Reports hazards
○ Any hazard reported earlier may mask detection of subsequent hazard with same memory

27

Using Synchronization Validation
● Clean Validation Run

○ Resolve all outstanding non-synchronization issues.
○ Recommend “best practices” and “GPU Assisted” as well.

● How To Enable
○ vkconfig
○ vk_layer_settings.txt
○ Environment variables

● Running
○ Disable all other validation
○ Chase down issues in debugger.

■ “Debug Action: Break” on Windows
■ Break in vkCreateDebugUtilsMessengerEXT callback

28

VK_LAYER_ENABLES=
 VK_VALIDATION_FEATURE_ENABLE_SYNCHRONIZATION_VALIDATION_EXT;

VALIDATION_CHECK_ENABLE_SYNCHRONIZATION_VALIDATION_QUEUE_SUBMIT

Simple Sync Val Demo
● Using the Vulkan-Samples

29

Congratulations, It’s An Error.
[SYNC-HAZARD-WRITE_AFTER_WRITE] Object 0: handle =
0x8483000000000025, type = VK_OBJECT_TYPE_IMAGE; | MessageID =
0xfdf9f5e1 | vkCmdPipelineBarrier: Hazard WRITE_AFTER_WRITE for image
barrier 0 VkImage 0x8483000000000025[]. Access info (usage:
SYNC_IMAGE_LAYOUT_TRANSITION, prior_usage:
SYNC_TRANSFER_TRANSFER_WRITE, write_barriers: 0, command:
vkCmdCopyBufferToImage, seq_no: 2, reset_no: 1)

● Understanding the parts of this error will take a little background knowledge

30

Think Like Synchronization Validation
● Stage/Access pairs are need to describe the usages of resources

○ Not all pairs are valid, valid pairs expressed as enum SYNC_<STAGE>_<ACCESS>
○ Enum reflects Sync2 expanded pipeline stages

● How does the current operation (draw, transfer, etc.) affect the resource
○ Stage/access of operation for each resource
○ Comparison to earlier command stage/access and sync operations (“..is it safe?”)
○ Include implicit operations (layout transition, load, resolve, store)

● What relation do synch operations have relative to a given resource?
○ Do they apply at all? Also include earlier synch operations (chaining)
○ What subsequent operations are “safed” for that resource

● What are the prior commands that touch a given resource (memory location)?
○ Include implicit operations (layout transition, load, resolve, store)

31

Synchronization Validation Messages
<command_name>: Hazard <hazard_type>
<command_specific_resource_identifier>
Access info (

usage: <current_stage_access>,
prior_usage: <most_recent_prior_stage_access>,
(read_barriers|write_barriers): <cumulative_barrier_for_prior>,
command: <command_of_prior_usage>,
seq_no: <command_index_of_prior_command>,
reset_no: <times_command_buffer_been_reset>

)

32

Congratulations, It’s An Error. (annotated)

vkCmdPipelineBarrier: Hazard WRITE_AFTER_WRITE
for image barrier 0 VkImage 0x8483000000000025[].
Access info (

usage: SYNC_IMAGE_LAYOUT_TRANSITION,
prior_usage: SYNC_TRANSFER_TRANSFER_WRITE,
write_barriers: 0,
command: vkCmdCopyBufferToImage,
seq_no: 2, reset_no: 1).

Current command.

33

Congratulations, It’s An Error. (annotated)

vkCmdPipelineBarrier: Hazard WRITE_AFTER_WRITE
for image barrier 0 VkImage 0x8483000000000025[].
Access info (

usage: SYNC_IMAGE_LAYOUT_TRANSITION,
prior_usage: SYNC_TRANSFER_TRANSFER_WRITE,
write_barriers: 0,
command: vkCmdCopyBufferToImage,
seq_no: 2, reset_no: 1).

Current command. Hazard Type

34

Congratulations, It’s An Error. (annotated)

vkCmdPipelineBarrier: Hazard WRITE_AFTER_WRITE
for image barrier 0 VkImage 0x8483000000000025[].
Access info (

usage: SYNC_IMAGE_LAYOUT_TRANSITION,
prior_usage: SYNC_TRANSFER_TRANSFER_WRITE,
write_barriers: 0,
command: vkCmdCopyBufferToImage,
seq_no: 2, reset_no: 1).

Current command. Hazard Type

Command
specific

resource
identifier

35

Congratulations, It’s An Error. (annotated)

vkCmdPipelineBarrier: Hazard WRITE_AFTER_WRITE
for image barrier 0 VkImage 0x8483000000000025[].
Access info (

usage: SYNC_IMAGE_LAYOUT_TRANSITION,
prior_usage: SYNC_TRANSFER_TRANSFER_WRITE,
write_barriers: 0,
command: vkCmdCopyBufferToImage,
seq_no: 2, reset_no: 1).

Current command. Hazard Type

Command
specific

resource
identifier

Current
command

Stage/Access

36

Congratulations, It’s An Error. (annotated)

vkCmdPipelineBarrier: Hazard WRITE_AFTER_WRITE
for image barrier 0 VkImage 0x8483000000000025[].
Access info (

usage: SYNC_IMAGE_LAYOUT_TRANSITION,
prior_usage: SYNC_TRANSFER_TRANSFER_WRITE,
write_barriers: 0,
command: vkCmdCopyBufferToImage,
seq_no: 2, reset_no: 1).

Current command. Hazard Type

Command
specific

resource
identifier

Current
command

Stage/Access

Previous
command

Stage/Access

37

Congratulations, It’s An Error. (annotated)

vkCmdPipelineBarrier: Hazard WRITE_AFTER_WRITE
for image barrier 0 VkImage 0x8483000000000025[].
Access info (

usage: SYNC_IMAGE_LAYOUT_TRANSITION,
prior_usage: SYNC_TRANSFER_TRANSFER_WRITE,
write_barriers: 0,
command: vkCmdCopyBufferToImage,
seq_no: 2, reset_no: 1).

Current command. Hazard Type

Command
specific

resource
identifier

Current
command

Stage/Access

Previous
command

Stage/Access

Barriers applied since
previous command

38

Congratulations, It’s An Error. (annotated)

vkCmdPipelineBarrier: Hazard WRITE_AFTER_WRITE
for image barrier 0 VkImage 0x8483000000000025[].
Access info (

usage: SYNC_IMAGE_LAYOUT_TRANSITION,
prior_usage: SYNC_TRANSFER_TRANSFER_WRITE,
write_barriers: 0,
command: vkCmdCopyBufferToImage,
seq_no: 2, reset_no: 1).

Current command. Hazard Type

Command
specific

resource
identifier

Current
command

Stage/Access

Previous
command

Stage/Access

Barriers applied since
previous command

Previous command39

Congratulations, It’s An Error. (annotated)

vkCmdPipelineBarrier: Hazard WRITE_AFTER_WRITE
for image barrier 0 VkImage 0x8483000000000025[].
Access info (

usage: SYNC_IMAGE_LAYOUT_TRANSITION,
prior_usage: SYNC_TRANSFER_TRANSFER_WRITE,
write_barriers: 0,
command: vkCmdCopyBufferToImage,
seq_no: 2, reset_no: 1).

Current command. Hazard Type

Command
specific

resource
identifier

Current
command

Stage/Access

Previous
command

Stage/Access

Barriers applied since
previous command

Previous command

Previous
command
location

40

Command Type Specific Error Details
● Copy

○ Source/Destination
○ Region index

● Draw or dispatch
○ Descriptor: binding, type
○ Attachment: index and type
○ Bound buffer: vertex or index

● Image Barriers
○ Transitions: oldLayout, newLayout
○ Image Subresource

● Render pass
○ Transitions: oldLayout, newLayout
○ load/store/resolve: attachment index, type, and operation

41

Simple Sync Val Demo Part II
● Using the Vulkan-Samples

42

Frequently Found Issues
● Missing pipeline stage for memory barriers

○ Stages are not logically extended for memory access barriers.

● Invalid stage/access pairs
○ Yields no barrier

● Relying on implicit subpass dependencies with VK_SUBPASS_EXTERNAL
○ Implicit Barriers are essential no-ops

● Missing memory dependencies with Image Layout Transitions
○ Transitions are full subresource range read/write operations.

● Missing stage/access scopes for load operations
○ Color and depth/stencil are done by different stage/access.

43

Debugging Strategies
● Stage/Access Completeness In Barriers

○ By inspection. Simplest approach.
○ Look at read/write barrier information vs. usage vs. existing barriers

● Localizing w/ Access info
○ prior_usage and (prior) command data can help identify access which hazard with current
○ (read|write)_barrier

● Hazards vs. Prior Image Layout Transitions
○ Find the last layout transition (barrier or subpass dependency)
○ Usually a missing dstStageMask or dstAccessMask

● Hazards at Image Layout Transitions
○ Missing srcStageMask or srcAccessMask for the affected resource

44

Debugging Strategies (cont’d)
● Hazards between buffer and/or image resource uses

○ Write-target to/from Read-target (pre/post transfer, attachment-to/from-texture)
○ Application needs to track the changing roles of a resource
○ Look for where these role changes happen, and check the synchronization operations

● Method of bisection
○ Insert “big hammer” Barriers/Subpass Dependency

■ Stage: VK_PIPELINE_STAGE_ALL_COMMANDS_BIT
(VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT inside render pass)

■ Access: VK_ACCESS_MEMORY_READ_BIT | VK_ACCESS_MEMORY_WRITE_BIT
○ If error disappears, error source is prior to Barrier, else it is after
○ Move barrier to determine source of hazard
○ Alternatively “Big Hammer” Semaphore or Fence between Queue Submits instead of barrier
○ Be sure to remove after – they will impact performance

● Be sure and check Core/Parameter Validation as you change code
45

After the presentation
Questions or presentation feedback?
Contact John Zulauf: @jzulauf on the Vulkan KhronosDevs slack channel

- https://app.slack.com/client/TDMDFS87M/CDTJ9BELF
- Or sign up for the KhronosDevs slack channel here:

https://www.khronos.org/news/permalink/khronos-developer-slack-5bfc62eb2
61764.20435008

Report bugs or make feature requests here:
https://github.com/KhronosGroup/Vulkan-ValidationLayers

For more information:
● https://www.lunarg.com/news-insights/white-papers/guide-to-vulkan-synchroni

zation-validation/
●

● https://www.lunarg.com/news-insights/white-papers/vulkan-synchronization2-
validation/

46

https://app.slack.com/client/TDMDFS87M/CDTJ9BELF
https://www.khronos.org/news/permalink/khronos-developer-slack-5bfc62eb261764.20435008
https://www.khronos.org/news/permalink/khronos-developer-slack-5bfc62eb261764.20435008
https://github.com/KhronosGroup/Vulkan-ValidationLayers
https://www.lunarg.com/news-insights/white-papers/guide-to-vulkan-synchronization-validation/
https://www.lunarg.com/news-insights/white-papers/guide-to-vulkan-synchronization-validation/
https://www.lunarg.com/news-insights/white-papers/vulkan-synchronization2-validation/
https://www.lunarg.com/news-insights/white-papers/vulkan-synchronization2-validation/

Vulkan Synchronization -- SIGGRAPH 2022

Slides are available at:
https://www.lunarg.com/news-insights/white-papers/vulkan-synchroni
zation-validation-tutorial-and-update/

47

https://www.lunarg.com/news-insights/white-papers/vulkan-synchronization-validation-tutorial-and-update/
https://www.lunarg.com/news-insights/white-papers/vulkan-synchronization-validation-tutorial-and-update/

Hello race condition! (sync2)
 vkCmdCopyBuffer(cb, buffer_a, buffer_b, 1, ®ion);

 auto barrier = lvl_init_struct<VkMemoryBarrier2KHR>()
 barrier.srcStageMask = VK_PIPELINE_STAGE_TRANSFER_BIT;
 barrier.srcAccessMask = VK_ACCESS_NONE_KHR;
 barrier.dstStageMask = VK_PIPELINE_STAGE_TRANSFER_BIT;
 barrier.dstAccessMask = VK_ACCESS_NONE_KHR;

 auto dep_info = lvl_init_struct<VkDependencyInfoKHR>();
 dep_info.memoryBarrierCount = 1;
 dep_info.pMemoryBarriers = &barrier;
 vkCmdPipelineBarrier2KHR(cb, &dep_info);

 vkCmdCopyBuffer(cb, buffer_c, buffer_a, 1, ®ion);

49

Events
● “Split” pipeline barriers

○ Can allow for more parallelism on the GPU
○ CmdSetEvent() is first scope (src)
○ CmdWaitEvents() is the second scope (dst)

● Hard to use (and infrequently used)
○ Only partially fixed by synchronization2

● Race conditions between Set, Reset, Wait commands
○ Require semaphore or pipeline barrier using the ALL_COMMANDS to avoid
○ “To fix correctly we need Timeline Events that work like Timeline Semaphores”

● May be signalled by Host
○ Sync2 VK_EVENT_CREATE_DEVICE_ONLY_BIT_KHR disables this

50

Events - example
Cmd 7 depends on 1, 2, & 3

Cmd 9 depends on 4, 5, & 6

Cmds 1-6 can potentially run in
parallel which wouldn’t be
possible with pipeline barriers

51

Events - changes sync2
void vkCmdSetEvent(
 VkCommandBuffer commandBuffer,
 VkEvent event,
 VkPipelineStageFlags stageMask); /* src stage */

void vkCmdResetEvent(
 VkCommandBuffer commandBuffer,
 VkEvent event,
 VkPipelineStageFlags stageMask); /* src stage */

void vkCmdWaitEvents(
 VkCommandBuffer commandBuffer,
 uint32_t eventCount,
 const VkEvent* pEvents,
 VkPipelineStageFlags srcStageMask,
 VkPipelineStageFlags dstStageMask,
 /* barrier lists omitted */);

● vkCmdSetEvent() only has enough information to set up execution
dependencies.

● Driver cannot schedule work for memory dependencies until
vkCmdWaitEvent() is called!

52

void vkCmdSetEvent2KHR(
 VkCommandBuffer commandBuffer,
 VkEvent event,
 const VkDependencyInfoKHR* pDependencyInfo);

vkCmdResetEvent2KHR() same as vkCmdResetEvent()

void vkCmdWaitEvents2KHR(
 VkCommandBuffer commandBuffer,
 uint32_t eventCount,
 const VkEvent* pEvents,
 const VkDependencyInfoKHR* pDependencyInfos);

● vkCmdSetEvent2KHR() dependency info must match what is

passed to vkCmdWaitEvent2KHR()

● each pDependencyInfo[i] has the barriers for pEvents[i]

○ In original function this was unclear

